diff --git a/docs/Dockerfile+ChatGLM b/docs/Dockerfile+ChatGLM index 52f5f33..dafcee7 100644 --- a/docs/Dockerfile+ChatGLM +++ b/docs/Dockerfile+ChatGLM @@ -1,6 +1,6 @@ # How to build | 如何构建: docker build -t gpt-academic --network=host -f Dockerfile+ChatGLM . -# How to run | 如何运行 (1) 直接运行: docker run --rm -it --net=host --gpus=all gpt-academic -# How to run | 如何运行 (2) 我想运行之前进容器做一些调整: docker run --rm -it --net=host --gpus=all gpt-academic bash +# How to run | 如何运行 (1) 直接运行(选择0号GPU): docker run --rm -it --net=host --gpus="0" gpt-academic +# How to run | 如何运行 (2) 我想运行之前进容器做一些调整: docker run --rm -it --net=host --gpus="0" gpt-academic bash # 从NVIDIA源,从而支持显卡运损(检查宿主的nvidia-smi中的cuda版本必须>=11.3) FROM nvidia/cuda:11.3.1-runtime-ubuntu20.04 @@ -11,11 +11,11 @@ RUN apt-get install -y git python python3 python-dev python3-dev --fix-missing # 配置代理网络(构建Docker镜像时使用) # # comment out below if you do not need proxy network | 如果不需要翻墙 - 从此行向下删除 -# RUN $useProxyNetwork curl cip.cc -# RUN sed -i '$ d' /etc/proxychains.conf -# RUN sed -i '$ d' /etc/proxychains.conf -# RUN echo "socks5 127.0.0.1 10880" >> /etc/proxychains.conf -# ARG useProxyNetwork=proxychains +RUN $useProxyNetwork curl cip.cc +RUN sed -i '$ d' /etc/proxychains.conf +RUN sed -i '$ d' /etc/proxychains.conf +RUN echo "socks5 127.0.0.1 10880" >> /etc/proxychains.conf +ARG useProxyNetwork=proxychains # # comment out above if you do not need proxy network | 如果不需要翻墙 - 从此行向上删除 @@ -24,7 +24,7 @@ RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8 # 下载分支 WORKDIR /gpt -RUN $useProxyNetwork git clone https://github.com/binary-husky/chatgpt_academic.git -b v3.1 +RUN $useProxyNetwork git clone https://github.com/binary-husky/chatgpt_academic.git WORKDIR /gpt/chatgpt_academic RUN $useProxyNetwork python3 -m pip install -r requirements.txt RUN $useProxyNetwork python3 -m pip install -r request_llm/requirements_chatglm.txt @@ -45,14 +45,14 @@ RUN $useProxyNetwork git pull RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()' # 为chatgpt-academic配置代理和API-KEY (非必要 可选步骤) -# 可同时填写多个API-KEY,支持openai的key和api2d的key共存,用英文逗号分割,例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey1,fkxxxx-api2dkey2" +# 可同时填写多个API-KEY,支持openai的key和api2d的key共存,用英文逗号分割,例如API_KEY = "sk-openaikey1,fkxxxx-api2dkey2,........" # LLM_MODEL 是选择初始的模型 # LOCAL_MODEL_DEVICE 是选择chatglm等本地模型运行的设备,可选 cpu 和 cuda RUN echo ' \n\ -API_KEY = "sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" \n\ +API_KEY = "sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx,fkxxxxxx-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" \n\ USE_PROXY = True \n\ LLM_MODEL = "chatglm" \n\ -LOCAL_MODEL_DEVICE = "cpu" \n\ +LOCAL_MODEL_DEVICE = "cuda" \n\ proxies = { "http": "socks5h://localhost:10880", "https": "socks5h://localhost:10880", } ' >> config_private.py # 启动