微调对话裁剪
This commit is contained in:
parent
676fe40d39
commit
0785ff2aed
@ -200,7 +200,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
if "reduce the length" in error_msg:
|
if "reduce the length" in error_msg:
|
||||||
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
||||||
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
||||||
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])//2) # history至少释放二分之一
|
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
|
||||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
||||||
# history = [] # 清除历史
|
# history = [] # 清除历史
|
||||||
elif "does not exist" in error_msg:
|
elif "does not exist" in error_msg:
|
||||||
|
17
toolbox.py
17
toolbox.py
@ -555,23 +555,26 @@ def run_gradio_in_subpath(demo, auth, port, custom_path):
|
|||||||
|
|
||||||
def clip_history(inputs, history, tokenizer, max_token_limit):
|
def clip_history(inputs, history, tokenizer, max_token_limit):
|
||||||
"""
|
"""
|
||||||
reduce the length of input/history by clipping.
|
reduce the length of history by clipping.
|
||||||
this function search for the longest entries to clip, little by little,
|
this function search for the longest entries to clip, little by little,
|
||||||
until the number of token of input/history is reduced under threshold.
|
until the number of token of history is reduced under threshold.
|
||||||
通过剪辑来缩短输入/历史记录的长度。
|
通过裁剪来缩短历史记录的长度。
|
||||||
此函数逐渐地搜索最长的条目进行剪辑,
|
此函数逐渐地搜索最长的条目进行剪辑,
|
||||||
直到输入/历史记录的标记数量降低到阈值以下。
|
直到历史记录的标记数量降低到阈值以下。
|
||||||
"""
|
"""
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from request_llm.bridge_all import model_info
|
from request_llm.bridge_all import model_info
|
||||||
def get_token_num(txt):
|
def get_token_num(txt):
|
||||||
return len(tokenizer.encode(txt, disallowed_special=()))
|
return len(tokenizer.encode(txt, disallowed_special=()))
|
||||||
input_token_num = get_token_num(inputs)
|
input_token_num = get_token_num(inputs)
|
||||||
if input_token_num < max_token_limit * 3 / 4:
|
if input_token_num < max_token_limit * 3 / 4:
|
||||||
# 当输入部分的token占比小于限制的3/4时,在裁剪时把input的余量留出来
|
# 当输入部分的token占比小于限制的3/4时,裁剪时
|
||||||
|
# 1. 把input的余量留出来
|
||||||
max_token_limit = max_token_limit - input_token_num
|
max_token_limit = max_token_limit - input_token_num
|
||||||
|
# 2. 把输出用的余量留出来
|
||||||
|
max_token_limit = max_token_limit - 128
|
||||||
|
# 3. 如果余量太小了,直接清除历史
|
||||||
if max_token_limit < 128:
|
if max_token_limit < 128:
|
||||||
# 余量太小了,直接清除历史
|
|
||||||
history = []
|
history = []
|
||||||
return history
|
return history
|
||||||
else:
|
else:
|
||||||
|
Loading…
x
Reference in New Issue
Block a user