解除本地模型的若干并发问题
This commit is contained in:
parent
17cf47dcd6
commit
09857ea455
@ -3,11 +3,32 @@ import threading
|
||||
from toolbox import update_ui
|
||||
from multiprocessing import Process, Pipe
|
||||
from contextlib import redirect_stdout
|
||||
from request_llms.queued_pipe import create_queue_pipe
|
||||
|
||||
class DebugLock(object):
|
||||
def __init__(self):
|
||||
self._lock = threading.Lock()
|
||||
|
||||
def acquire(self):
|
||||
print("acquiring", self)
|
||||
#traceback.print_tb
|
||||
self._lock.acquire()
|
||||
print("acquired", self)
|
||||
|
||||
def release(self):
|
||||
print("released", self)
|
||||
#traceback.print_tb
|
||||
self._lock.release()
|
||||
|
||||
def __enter__(self):
|
||||
self.acquire()
|
||||
|
||||
def __exit__(self, type, value, traceback):
|
||||
self.release()
|
||||
|
||||
def SingletonLocalLLM(cls):
|
||||
"""
|
||||
一个单实例装饰器
|
||||
Singleton Decroator for LocalLLMHandle
|
||||
"""
|
||||
_instance = {}
|
||||
|
||||
@ -46,24 +67,41 @@ def reset_tqdm_output():
|
||||
|
||||
class LocalLLMHandle(Process):
|
||||
def __init__(self):
|
||||
# ⭐主进程执行
|
||||
# ⭐run in main process
|
||||
super().__init__(daemon=True)
|
||||
self.is_main_process = True # init
|
||||
self.corrupted = False
|
||||
self.load_model_info()
|
||||
self.parent, self.child = Pipe()
|
||||
self.parent, self.child = create_queue_pipe()
|
||||
self.parent_state, self.child_state = create_queue_pipe()
|
||||
# allow redirect_stdout
|
||||
self.std_tag = "[Subprocess Message] "
|
||||
self.child.write = lambda x: self.child.send(self.std_tag + x)
|
||||
self.running = True
|
||||
self._model = None
|
||||
self._tokenizer = None
|
||||
self.info = ""
|
||||
self.state = ""
|
||||
self.check_dependency()
|
||||
self.is_main_process = False # state wrap for child process
|
||||
self.start()
|
||||
self.threadLock = threading.Lock()
|
||||
self.is_main_process = True # state wrap for child process
|
||||
self.threadLock = DebugLock()
|
||||
|
||||
def get_state(self):
|
||||
# ⭐run in main process
|
||||
while self.parent_state.poll():
|
||||
self.state = self.parent_state.recv()
|
||||
return self.state
|
||||
|
||||
def set_state(self, new_state):
|
||||
# ⭐run in main process or 🏃♂️🏃♂️🏃♂️ run in child process
|
||||
if self.is_main_process:
|
||||
self.state = new_state
|
||||
else:
|
||||
self.child_state.send(new_state)
|
||||
|
||||
def load_model_info(self):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
# 🏃♂️🏃♂️🏃♂️ run in child process
|
||||
raise NotImplementedError("Method not implemented yet")
|
||||
self.model_name = ""
|
||||
self.cmd_to_install = ""
|
||||
@ -72,40 +110,40 @@ class LocalLLMHandle(Process):
|
||||
"""
|
||||
This function should return the model and the tokenizer
|
||||
"""
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
# 🏃♂️🏃♂️🏃♂️ run in child process
|
||||
raise NotImplementedError("Method not implemented yet")
|
||||
|
||||
def llm_stream_generator(self, **kwargs):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
# 🏃♂️🏃♂️🏃♂️ run in child process
|
||||
raise NotImplementedError("Method not implemented yet")
|
||||
|
||||
def try_to_import_special_deps(self, **kwargs):
|
||||
"""
|
||||
import something that will raise error if the user does not install requirement_*.txt
|
||||
"""
|
||||
# ⭐主进程执行
|
||||
# ⭐run in main process
|
||||
raise NotImplementedError("Method not implemented yet")
|
||||
|
||||
def check_dependency(self):
|
||||
# ⭐主进程执行
|
||||
# ⭐run in main process
|
||||
try:
|
||||
self.try_to_import_special_deps()
|
||||
self.info = "`依赖检测通过`"
|
||||
self.set_state("`依赖检测通过`")
|
||||
self.running = True
|
||||
except:
|
||||
self.info = f"缺少{self.model_name}的依赖,如果要使用{self.model_name},除了基础的pip依赖以外,您还需要运行{self.cmd_to_install}安装{self.model_name}的依赖。"
|
||||
self.set_state(f"缺少{self.model_name}的依赖,如果要使用{self.model_name},除了基础的pip依赖以外,您还需要运行{self.cmd_to_install}安装{self.model_name}的依赖。")
|
||||
self.running = False
|
||||
|
||||
def run(self):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
# 🏃♂️🏃♂️🏃♂️ run in child process
|
||||
# 第一次运行,加载参数
|
||||
reset_tqdm_output()
|
||||
self.info = "`尝试加载模型`"
|
||||
self.set_state("`尝试加载模型`")
|
||||
try:
|
||||
with redirect_stdout(self.child):
|
||||
self._model, self._tokenizer = self.load_model_and_tokenizer()
|
||||
except:
|
||||
self.info = "`加载模型失败`"
|
||||
self.set_state("`加载模型失败`")
|
||||
self.running = False
|
||||
from toolbox import trimmed_format_exc
|
||||
self.child.send(
|
||||
@ -113,7 +151,7 @@ class LocalLLMHandle(Process):
|
||||
self.child.send('[FinishBad]')
|
||||
raise RuntimeError(f"不能正常加载{self.model_name}的参数!")
|
||||
|
||||
self.info = "`准备就绪`"
|
||||
self.set_state("`准备就绪`")
|
||||
while True:
|
||||
# 进入任务等待状态
|
||||
kwargs = self.child.recv()
|
||||
@ -121,6 +159,7 @@ class LocalLLMHandle(Process):
|
||||
try:
|
||||
for response_full in self.llm_stream_generator(**kwargs):
|
||||
self.child.send(response_full)
|
||||
print('debug' + response_full)
|
||||
self.child.send('[Finish]')
|
||||
# 请求处理结束,开始下一个循环
|
||||
except:
|
||||
@ -129,18 +168,35 @@ class LocalLLMHandle(Process):
|
||||
f'[Local Message] 调用{self.model_name}失败.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
|
||||
self.child.send('[Finish]')
|
||||
|
||||
def clear_pending_messages(self):
|
||||
# ⭐run in main process
|
||||
while True:
|
||||
if self.parent.poll():
|
||||
self.parent.recv()
|
||||
continue
|
||||
for _ in range(5):
|
||||
time.sleep(0.5)
|
||||
if self.parent.poll():
|
||||
r = self.parent.recv()
|
||||
continue
|
||||
break
|
||||
return
|
||||
|
||||
def stream_chat(self, **kwargs):
|
||||
# ⭐主进程执行
|
||||
if self.info == "`准备就绪`":
|
||||
# ⭐run in main process
|
||||
if self.get_state() == "`准备就绪`":
|
||||
yield "`正在等待线程锁,排队中请稍后 ...`"
|
||||
|
||||
with self.threadLock:
|
||||
if self.parent.poll():
|
||||
while self.parent.poll(): self.parent.recv()
|
||||
yield "`排队中请稍后 ...`"
|
||||
self.clear_pending_messages()
|
||||
self.parent.send(kwargs)
|
||||
std_out = ""
|
||||
std_out_clip_len = 4096
|
||||
while True:
|
||||
res = self.parent.recv()
|
||||
# pipe_watch_dog.feed()
|
||||
if res.startswith(self.std_tag):
|
||||
new_output = res[len(self.std_tag):]
|
||||
std_out = std_out[:std_out_clip_len]
|
||||
@ -157,20 +213,18 @@ class LocalLLMHandle(Process):
|
||||
std_out = ""
|
||||
yield res
|
||||
|
||||
|
||||
def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='classic'):
|
||||
load_message = f"{model_name}尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,{model_name}消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
"""
|
||||
⭐多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
refer to request_llms/bridge_all.py
|
||||
"""
|
||||
_llm_handle = LLMSingletonClass()
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] = load_message + "\n\n" + _llm_handle.info
|
||||
observe_window[0] = load_message + "\n\n" + _llm_handle.get_state()
|
||||
if not _llm_handle.running:
|
||||
raise RuntimeError(_llm_handle.info)
|
||||
raise RuntimeError(_llm_handle.get_state())
|
||||
|
||||
if history_format == 'classic':
|
||||
# 没有 sys_prompt 接口,因此把prompt加入 history
|
||||
@ -210,16 +264,15 @@ def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='cla
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
|
||||
"""
|
||||
⭐单线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
refer to request_llms/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, ""))
|
||||
|
||||
_llm_handle = LLMSingletonClass()
|
||||
chatbot[-1] = (inputs, load_message + "\n\n" + _llm_handle.info)
|
||||
chatbot[-1] = (inputs, load_message + "\n\n" + _llm_handle.get_state())
|
||||
yield from update_ui(chatbot=chatbot, history=[])
|
||||
if not _llm_handle.running:
|
||||
raise RuntimeError(_llm_handle.info)
|
||||
raise RuntimeError(_llm_handle.get_state())
|
||||
|
||||
if additional_fn is not None:
|
||||
from core_functional import handle_core_functionality
|
||||
|
24
request_llms/queued_pipe.py
Normal file
24
request_llms/queued_pipe.py
Normal file
@ -0,0 +1,24 @@
|
||||
from multiprocessing import Pipe, Queue
|
||||
import time
|
||||
import threading
|
||||
|
||||
class PipeSide(object):
|
||||
def __init__(self, q_2remote, q_2local) -> None:
|
||||
self.q_2remote = q_2remote
|
||||
self.q_2local = q_2local
|
||||
|
||||
def recv(self):
|
||||
return self.q_2local.get()
|
||||
|
||||
def send(self, buf):
|
||||
self.q_2remote.put(buf)
|
||||
|
||||
def poll(self):
|
||||
return not self.q_2local.empty()
|
||||
|
||||
def create_queue_pipe():
|
||||
q_p2c = Queue()
|
||||
q_c2p = Queue()
|
||||
pipe_c = PipeSide(q_2local=q_p2c, q_2remote=q_c2p)
|
||||
pipe_p = PipeSide(q_2local=q_c2p, q_2remote=q_p2c)
|
||||
return pipe_c, pipe_p
|
Loading…
x
Reference in New Issue
Block a user