diff --git a/crazy_functions/crazy_utils.py b/crazy_functions/crazy_utils.py
index a455cff..bdd6e2b 100644
--- a/crazy_functions/crazy_utils.py
+++ b/crazy_functions/crazy_utils.py
@@ -1,31 +1,32 @@
-
def request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, top_p, temperature, chatbot, history, sys_prompt, refresh_interval=0.2):
import time
from concurrent.futures import ThreadPoolExecutor
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
# 用户反馈
- chatbot.append([inputs_show_user, ""]); msg = '正常'
+ chatbot.append([inputs_show_user, ""])
+ msg = '正常'
yield chatbot, [], msg
executor = ThreadPoolExecutor(max_workers=16)
mutable = ["", time.time()]
future = executor.submit(lambda:
- predict_no_ui_long_connection(inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable)
- )
+ predict_no_ui_long_connection(
+ inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable)
+ )
while True:
# yield一次以刷新前端页面
time.sleep(refresh_interval)
# “喂狗”(看门狗)
mutable[1] = time.time()
- if future.done(): break
- chatbot[-1] = [chatbot[-1][0], mutable[0]]; msg = "正常"
+ if future.done():
+ break
+ chatbot[-1] = [chatbot[-1][0], mutable[0]]
+ msg = "正常"
yield chatbot, [], msg
return future.result()
-
-
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inputs_array, inputs_show_user_array, top_p, temperature, chatbot, history_array, sys_prompt_array, refresh_interval=0.2, max_workers=10, scroller_max_len=30):
import time
from concurrent.futures import ThreadPoolExecutor
@@ -35,34 +36,46 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inp
executor = ThreadPoolExecutor(max_workers=max_workers)
n_frag = len(inputs_array)
# 用户反馈
- chatbot.append(["请开始多线程操作。", ""]); msg = '正常'
+ chatbot.append(["请开始多线程操作。", ""])
+ msg = '正常'
yield chatbot, [], msg
# 异步原子
mutable = [["", time.time()] for _ in range(n_frag)]
+
def _req_gpt(index, inputs, history, sys_prompt):
gpt_say = predict_no_ui_long_connection(
- inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[index]
+ inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[
+ index]
)
return gpt_say
# 异步任务开始
- futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
+ futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(
+ range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
cnt = 0
while True:
# yield一次以刷新前端页面
- time.sleep(refresh_interval); cnt += 1
+ time.sleep(refresh_interval)
+ cnt += 1
worker_done = [h.done() for h in futures]
- if all(worker_done): executor.shutdown(); break
+ if all(worker_done):
+ executor.shutdown()
+ break
# 更好的UI视觉效果
observe_win = []
# 每个线程都要“喂狗”(看门狗)
- for thread_index, _ in enumerate(worker_done): mutable[thread_index][1] = time.time()
+ for thread_index, _ in enumerate(worker_done):
+ mutable[thread_index][1] = time.time()
# 在前端打印些好玩的东西
- for thread_index, _ in enumerate(worker_done):
+ for thread_index, _ in enumerate(worker_done):
print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\
- replace('\n','').replace('```','...').replace(' ','.').replace('
','.....').replace('$','.')+"`... ]"
+ replace('\n', '').replace('```', '...').replace(
+ ' ', '.').replace('
', '.....').replace('$', '.')+"`... ]"
observe_win.append(print_something_really_funny)
- stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(worker_done, observe_win)])
- chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt%10+1))]; msg = "正常"
+ stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(
+ worker_done, observe_win)])
+ chatbot[-1] = [chatbot[-1][0],
+ f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt % 10+1))]
+ msg = "正常"
yield chatbot, [], msg
# 异步任务结束
gpt_response_collection = []
@@ -72,23 +85,23 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inp
return gpt_response_collection
-
-
def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
- def cut(txt_tocut, must_break_at_empty_line): # 递归
+ def cut(txt_tocut, must_break_at_empty_line): # 递归
if get_token_fn(txt_tocut) <= limit:
return [txt_tocut]
else:
lines = txt_tocut.split('\n')
- estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
+ estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
estimated_line_cut = int(estimated_line_cut)
for cnt in reversed(range(estimated_line_cut)):
- if must_break_at_empty_line:
- if lines[cnt] != "": continue
+ if must_break_at_empty_line:
+ if lines[cnt] != "":
+ continue
print(cnt)
prev = "\n".join(lines[:cnt])
post = "\n".join(lines[cnt:])
- if get_token_fn(prev) < limit: break
+ if get_token_fn(prev) < limit:
+ break
if cnt == 0:
print('what the fuck ?')
raise RuntimeError("存在一行极长的文本!")
@@ -102,22 +115,25 @@ def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
except RuntimeError:
return cut(txt, must_break_at_empty_line=False)
+
def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
- def cut(txt_tocut, must_break_at_empty_line): # 递归
+ def cut(txt_tocut, must_break_at_empty_line): # 递归
if get_token_fn(txt_tocut) <= limit:
return [txt_tocut]
else:
lines = txt_tocut.split('\n')
- estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
+ estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
estimated_line_cut = int(estimated_line_cut)
cnt = 0
for cnt in reversed(range(estimated_line_cut)):
- if must_break_at_empty_line:
- if lines[cnt] != "": continue
+ if must_break_at_empty_line:
+ if lines[cnt] != "":
+ continue
print(cnt)
prev = "\n".join(lines[:cnt])
post = "\n".join(lines[cnt:])
- if get_token_fn(prev) < limit: break
+ if get_token_fn(prev) < limit:
+ break
if cnt == 0:
# print('what the fuck ? 存在一行极长的文本!')
raise RuntimeError("存在一行极长的文本!")
@@ -135,4 +151,3 @@ def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
# 这个中文的句号是故意的,作为一个标识而存在
res = cut(txt.replace('.', '。\n'), must_break_at_empty_line=False)
return [r.replace('。\n', '.') for r in res]
-
diff --git a/crazy_functions/批量翻译PDF文档_多线程.py b/crazy_functions/批量翻译PDF文档_多线程.py
index e13b072..348ebb9 100644
--- a/crazy_functions/批量翻译PDF文档_多线程.py
+++ b/crazy_functions/批量翻译PDF文档_多线程.py
@@ -2,6 +2,7 @@ from toolbox import CatchException, report_execption, write_results_to_file
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
+
def read_and_clean_pdf_text(fp):
"""
**输入参数说明**
@@ -20,7 +21,8 @@ def read_and_clean_pdf_text(fp):
- 清除重复的换行
- 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔
"""
- import fitz, re
+ import fitz
+ import re
import numpy as np
# file_content = ""
with fitz.open(fp) as doc:
@@ -31,10 +33,13 @@ def read_and_clean_pdf_text(fp):
text_areas = page.get_text("dict") # 获取页面上的文本信息
# 块元提取 for each word segment with in line for each line cross-line words for each block
- meta_txt.extend( [ " ".join(["".join( [wtf['text'] for wtf in l['spans'] ]) for l in t['lines'] ]).replace('- ','') for t in text_areas['blocks'] if 'lines' in t])
- meta_font.extend([ np.mean( [ np.mean([wtf['size'] for wtf in l['spans'] ]) for l in t['lines'] ]) for t in text_areas['blocks'] if 'lines' in t])
- if index==0:
- page_one_meta = [" ".join(["".join( [wtf['text'] for wtf in l['spans'] ]) for l in t['lines'] ]).replace('- ','') for t in text_areas['blocks'] if 'lines' in t]
+ meta_txt.extend([" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
+ '- ', '') for t in text_areas['blocks'] if 'lines' in t])
+ meta_font.extend([np.mean([np.mean([wtf['size'] for wtf in l['spans']])
+ for l in t['lines']]) for t in text_areas['blocks'] if 'lines' in t])
+ if index == 0:
+ page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
+ '- ', '') for t in text_areas['blocks'] if 'lines' in t]
def 把字符太少的块清除为回车(meta_txt):
for index, block_txt in enumerate(meta_txt):
@@ -61,8 +66,10 @@ def read_and_clean_pdf_text(fp):
for _ in range(100):
for index, block_txt in enumerate(meta_txt):
if starts_with_lowercase_word(block_txt):
- if meta_txt[index-1]!='\n': meta_txt[index-1] += ' '
- else: meta_txt[index-1] = ''
+ if meta_txt[index-1] != '\n':
+ meta_txt[index-1] += ' '
+ else:
+ meta_txt[index-1] = ''
meta_txt[index-1] += meta_txt[index]
meta_txt[index] = '\n'
return meta_txt
@@ -72,13 +79,14 @@ def read_and_clean_pdf_text(fp):
meta_txt = '\n'.join(meta_txt)
# 清除重复的换行
for _ in range(5):
- meta_txt = meta_txt.replace('\n\n','\n')
+ meta_txt = meta_txt.replace('\n\n', '\n')
# 换行 -> 双换行
meta_txt = meta_txt.replace('\n', '\n\n')
return meta_txt, page_one_meta
+
@CatchException
def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt, WEB_PORT):
import glob
@@ -92,7 +100,8 @@ def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt,
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
- import fitz, tiktoken
+ import fitz
+ import tiktoken
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",
@@ -129,13 +138,8 @@ def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt,
yield from 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt)
-
-
def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt):
- import time
- import glob
import os
- import fitz
import tiktoken
TOKEN_LIMIT_PER_FRAGMENT = 1600
generated_conclusion_files = []
@@ -145,39 +149,44 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor
# 递归地切割PDF文件
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
enc = tiktoken.get_encoding("gpt2")
- get_token_num = lambda txt: len(enc.encode(txt))
+ def get_token_num(txt): return len(enc.encode(txt))
# 分解文本
- paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
+ paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
# 为了更好的效果,我们剥离Introduction之后的部分
- paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
+ paper_meta = page_one_fragments[0].split('introduction')[0].split(
+ 'Introduction')[0].split('INTRODUCTION')[0]
# 单线,获取文章meta信息
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
- inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}",
- inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。",
+ inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}",
+ inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。",
top_p=top_p, temperature=temperature,
chatbot=chatbot, history=[],
sys_prompt="Your job is to collect information from materials。",
)
# 多线,翻译
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
- inputs_array = [f"以下是你需要翻译的文章段落:\n{frag}" for frag in paper_fragments],
- inputs_show_user_array = [f"" for _ in paper_fragments],
+ inputs_array=[
+ f"以下是你需要翻译的文章段落:\n{frag}" for frag in paper_fragments],
+ inputs_show_user_array=[f"" for _ in paper_fragments],
top_p=top_p, temperature=temperature,
chatbot=chatbot,
history_array=[[paper_meta] for _ in paper_fragments],
- sys_prompt_array=["请你作为一个学术翻译,把整个段落翻译成中文,要求语言简洁,禁止重复输出原文。" for _ in paper_fragments],
- max_workers=16 # OpenAI所允许的最大并行过载
+ sys_prompt_array=[
+ "请你作为一个学术翻译,把整个段落翻译成中文,要求语言简洁,禁止重复输出原文。" for _ in paper_fragments],
+ max_workers=16 # OpenAI所允许的最大并行过载
)
final = ["", paper_meta_info + '\n\n---\n\n---\n\n---\n\n']
final.extend(gpt_response_collection)
create_report_file_name = f"{os.path.basename(fp)}.trans.md"
res = write_results_to_file(final, file_name=create_report_file_name)
- generated_conclusion_files.append(f'./gpt_log/{create_report_file_name}')
- chatbot.append((f"{fp}完成了吗?", res)); msg = "完成"
+ generated_conclusion_files.append(
+ f'./gpt_log/{create_report_file_name}')
+ chatbot.append((f"{fp}完成了吗?", res))
+ msg = "完成"
yield chatbot, history, msg
# 准备文件的下载
@@ -185,8 +194,10 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor
for pdf_path in generated_conclusion_files:
# 重命名文件
rename_file = f'./gpt_log/总结论文-{os.path.basename(pdf_path)}'
- if os.path.exists(rename_file): os.remove(rename_file)
- shutil.copyfile(pdf_path, rename_file);
- if os.path.exists(pdf_path): os.remove(pdf_path)
+ if os.path.exists(rename_file):
+ os.remove(rename_file)
+ shutil.copyfile(pdf_path, rename_file)
+ if os.path.exists(pdf_path):
+ os.remove(pdf_path)
chatbot.append(("给出输出文件清单", str(generated_conclusion_files)))
- yield chatbot, history, msg
\ No newline at end of file
+ yield chatbot, history, msg