From 0b3f7b8821e8b648af25e1584cd7302d23aacb9a Mon Sep 17 00:00:00 2001 From: qingxu fu <505030475@qq.com> Date: Thu, 6 Apr 2023 18:15:11 +0800 Subject: [PATCH] format file --- crazy_functions/crazy_utils.py | 77 ++++++++++++++--------- crazy_functions/批量翻译PDF文档_多线程.py | 69 +++++++++++--------- 2 files changed, 86 insertions(+), 60 deletions(-) diff --git a/crazy_functions/crazy_utils.py b/crazy_functions/crazy_utils.py index a455cff..bdd6e2b 100644 --- a/crazy_functions/crazy_utils.py +++ b/crazy_functions/crazy_utils.py @@ -1,31 +1,32 @@ - def request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, top_p, temperature, chatbot, history, sys_prompt, refresh_interval=0.2): import time from concurrent.futures import ThreadPoolExecutor from request_llm.bridge_chatgpt import predict_no_ui_long_connection # 用户反馈 - chatbot.append([inputs_show_user, ""]); msg = '正常' + chatbot.append([inputs_show_user, ""]) + msg = '正常' yield chatbot, [], msg executor = ThreadPoolExecutor(max_workers=16) mutable = ["", time.time()] future = executor.submit(lambda: - predict_no_ui_long_connection(inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable) - ) + predict_no_ui_long_connection( + inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable) + ) while True: # yield一次以刷新前端页面 time.sleep(refresh_interval) # “喂狗”(看门狗) mutable[1] = time.time() - if future.done(): break - chatbot[-1] = [chatbot[-1][0], mutable[0]]; msg = "正常" + if future.done(): + break + chatbot[-1] = [chatbot[-1][0], mutable[0]] + msg = "正常" yield chatbot, [], msg return future.result() - - def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inputs_array, inputs_show_user_array, top_p, temperature, chatbot, history_array, sys_prompt_array, refresh_interval=0.2, max_workers=10, scroller_max_len=30): import time from concurrent.futures import ThreadPoolExecutor @@ -35,34 +36,46 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inp executor = ThreadPoolExecutor(max_workers=max_workers) n_frag = len(inputs_array) # 用户反馈 - chatbot.append(["请开始多线程操作。", ""]); msg = '正常' + chatbot.append(["请开始多线程操作。", ""]) + msg = '正常' yield chatbot, [], msg # 异步原子 mutable = [["", time.time()] for _ in range(n_frag)] + def _req_gpt(index, inputs, history, sys_prompt): gpt_say = predict_no_ui_long_connection( - inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[index] + inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[ + index] ) return gpt_say # 异步任务开始 - futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)] + futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip( + range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)] cnt = 0 while True: # yield一次以刷新前端页面 - time.sleep(refresh_interval); cnt += 1 + time.sleep(refresh_interval) + cnt += 1 worker_done = [h.done() for h in futures] - if all(worker_done): executor.shutdown(); break + if all(worker_done): + executor.shutdown() + break # 更好的UI视觉效果 observe_win = [] # 每个线程都要“喂狗”(看门狗) - for thread_index, _ in enumerate(worker_done): mutable[thread_index][1] = time.time() + for thread_index, _ in enumerate(worker_done): + mutable[thread_index][1] = time.time() # 在前端打印些好玩的东西 - for thread_index, _ in enumerate(worker_done): + for thread_index, _ in enumerate(worker_done): print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\ - replace('\n','').replace('```','...').replace(' ','.').replace('
','.....').replace('$','.')+"`... ]" + replace('\n', '').replace('```', '...').replace( + ' ', '.').replace('
', '.....').replace('$', '.')+"`... ]" observe_win.append(print_something_really_funny) - stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(worker_done, observe_win)]) - chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt%10+1))]; msg = "正常" + stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip( + worker_done, observe_win)]) + chatbot[-1] = [chatbot[-1][0], + f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt % 10+1))] + msg = "正常" yield chatbot, [], msg # 异步任务结束 gpt_response_collection = [] @@ -72,23 +85,23 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inp return gpt_response_collection - - def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit): - def cut(txt_tocut, must_break_at_empty_line): # 递归 + def cut(txt_tocut, must_break_at_empty_line): # 递归 if get_token_fn(txt_tocut) <= limit: return [txt_tocut] else: lines = txt_tocut.split('\n') - estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines) + estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines) estimated_line_cut = int(estimated_line_cut) for cnt in reversed(range(estimated_line_cut)): - if must_break_at_empty_line: - if lines[cnt] != "": continue + if must_break_at_empty_line: + if lines[cnt] != "": + continue print(cnt) prev = "\n".join(lines[:cnt]) post = "\n".join(lines[cnt:]) - if get_token_fn(prev) < limit: break + if get_token_fn(prev) < limit: + break if cnt == 0: print('what the fuck ?') raise RuntimeError("存在一行极长的文本!") @@ -102,22 +115,25 @@ def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit): except RuntimeError: return cut(txt, must_break_at_empty_line=False) + def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit): - def cut(txt_tocut, must_break_at_empty_line): # 递归 + def cut(txt_tocut, must_break_at_empty_line): # 递归 if get_token_fn(txt_tocut) <= limit: return [txt_tocut] else: lines = txt_tocut.split('\n') - estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines) + estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines) estimated_line_cut = int(estimated_line_cut) cnt = 0 for cnt in reversed(range(estimated_line_cut)): - if must_break_at_empty_line: - if lines[cnt] != "": continue + if must_break_at_empty_line: + if lines[cnt] != "": + continue print(cnt) prev = "\n".join(lines[:cnt]) post = "\n".join(lines[cnt:]) - if get_token_fn(prev) < limit: break + if get_token_fn(prev) < limit: + break if cnt == 0: # print('what the fuck ? 存在一行极长的文本!') raise RuntimeError("存在一行极长的文本!") @@ -135,4 +151,3 @@ def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit): # 这个中文的句号是故意的,作为一个标识而存在 res = cut(txt.replace('.', '。\n'), must_break_at_empty_line=False) return [r.replace('。\n', '.') for r in res] - diff --git a/crazy_functions/批量翻译PDF文档_多线程.py b/crazy_functions/批量翻译PDF文档_多线程.py index e13b072..348ebb9 100644 --- a/crazy_functions/批量翻译PDF文档_多线程.py +++ b/crazy_functions/批量翻译PDF文档_多线程.py @@ -2,6 +2,7 @@ from toolbox import CatchException, report_execption, write_results_to_file from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency + def read_and_clean_pdf_text(fp): """ **输入参数说明** @@ -20,7 +21,8 @@ def read_and_clean_pdf_text(fp): - 清除重复的换行 - 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔 """ - import fitz, re + import fitz + import re import numpy as np # file_content = "" with fitz.open(fp) as doc: @@ -31,10 +33,13 @@ def read_and_clean_pdf_text(fp): text_areas = page.get_text("dict") # 获取页面上的文本信息 # 块元提取 for each word segment with in line for each line cross-line words for each block - meta_txt.extend( [ " ".join(["".join( [wtf['text'] for wtf in l['spans'] ]) for l in t['lines'] ]).replace('- ','') for t in text_areas['blocks'] if 'lines' in t]) - meta_font.extend([ np.mean( [ np.mean([wtf['size'] for wtf in l['spans'] ]) for l in t['lines'] ]) for t in text_areas['blocks'] if 'lines' in t]) - if index==0: - page_one_meta = [" ".join(["".join( [wtf['text'] for wtf in l['spans'] ]) for l in t['lines'] ]).replace('- ','') for t in text_areas['blocks'] if 'lines' in t] + meta_txt.extend([" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace( + '- ', '') for t in text_areas['blocks'] if 'lines' in t]) + meta_font.extend([np.mean([np.mean([wtf['size'] for wtf in l['spans']]) + for l in t['lines']]) for t in text_areas['blocks'] if 'lines' in t]) + if index == 0: + page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace( + '- ', '') for t in text_areas['blocks'] if 'lines' in t] def 把字符太少的块清除为回车(meta_txt): for index, block_txt in enumerate(meta_txt): @@ -61,8 +66,10 @@ def read_and_clean_pdf_text(fp): for _ in range(100): for index, block_txt in enumerate(meta_txt): if starts_with_lowercase_word(block_txt): - if meta_txt[index-1]!='\n': meta_txt[index-1] += ' ' - else: meta_txt[index-1] = '' + if meta_txt[index-1] != '\n': + meta_txt[index-1] += ' ' + else: + meta_txt[index-1] = '' meta_txt[index-1] += meta_txt[index] meta_txt[index] = '\n' return meta_txt @@ -72,13 +79,14 @@ def read_and_clean_pdf_text(fp): meta_txt = '\n'.join(meta_txt) # 清除重复的换行 for _ in range(5): - meta_txt = meta_txt.replace('\n\n','\n') + meta_txt = meta_txt.replace('\n\n', '\n') # 换行 -> 双换行 meta_txt = meta_txt.replace('\n', '\n\n') return meta_txt, page_one_meta + @CatchException def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt, WEB_PORT): import glob @@ -92,7 +100,8 @@ def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt, # 尝试导入依赖,如果缺少依赖,则给出安装建议 try: - import fitz, tiktoken + import fitz + import tiktoken except: report_execption(chatbot, history, a=f"解析项目: {txt}", @@ -129,13 +138,8 @@ def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt, yield from 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt) - - def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt): - import time - import glob import os - import fitz import tiktoken TOKEN_LIMIT_PER_FRAGMENT = 1600 generated_conclusion_files = [] @@ -145,39 +149,44 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor # 递归地切割PDF文件 from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf enc = tiktoken.get_encoding("gpt2") - get_token_num = lambda txt: len(enc.encode(txt)) + def get_token_num(txt): return len(enc.encode(txt)) # 分解文本 - paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf( + paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf( txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT) page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf( txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4) # 为了更好的效果,我们剥离Introduction之后的部分 - paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0] + paper_meta = page_one_fragments[0].split('introduction')[0].split( + 'Introduction')[0].split('INTRODUCTION')[0] # 单线,获取文章meta信息 paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive( - inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}", - inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。", + inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}", + inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。", top_p=top_p, temperature=temperature, chatbot=chatbot, history=[], sys_prompt="Your job is to collect information from materials。", ) # 多线,翻译 gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency( - inputs_array = [f"以下是你需要翻译的文章段落:\n{frag}" for frag in paper_fragments], - inputs_show_user_array = [f"" for _ in paper_fragments], + inputs_array=[ + f"以下是你需要翻译的文章段落:\n{frag}" for frag in paper_fragments], + inputs_show_user_array=[f"" for _ in paper_fragments], top_p=top_p, temperature=temperature, chatbot=chatbot, history_array=[[paper_meta] for _ in paper_fragments], - sys_prompt_array=["请你作为一个学术翻译,把整个段落翻译成中文,要求语言简洁,禁止重复输出原文。" for _ in paper_fragments], - max_workers=16 # OpenAI所允许的最大并行过载 + sys_prompt_array=[ + "请你作为一个学术翻译,把整个段落翻译成中文,要求语言简洁,禁止重复输出原文。" for _ in paper_fragments], + max_workers=16 # OpenAI所允许的最大并行过载 ) final = ["", paper_meta_info + '\n\n---\n\n---\n\n---\n\n'] final.extend(gpt_response_collection) create_report_file_name = f"{os.path.basename(fp)}.trans.md" res = write_results_to_file(final, file_name=create_report_file_name) - generated_conclusion_files.append(f'./gpt_log/{create_report_file_name}') - chatbot.append((f"{fp}完成了吗?", res)); msg = "完成" + generated_conclusion_files.append( + f'./gpt_log/{create_report_file_name}') + chatbot.append((f"{fp}完成了吗?", res)) + msg = "完成" yield chatbot, history, msg # 准备文件的下载 @@ -185,8 +194,10 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor for pdf_path in generated_conclusion_files: # 重命名文件 rename_file = f'./gpt_log/总结论文-{os.path.basename(pdf_path)}' - if os.path.exists(rename_file): os.remove(rename_file) - shutil.copyfile(pdf_path, rename_file); - if os.path.exists(pdf_path): os.remove(pdf_path) + if os.path.exists(rename_file): + os.remove(rename_file) + shutil.copyfile(pdf_path, rename_file) + if os.path.exists(pdf_path): + os.remove(pdf_path) chatbot.append(("给出输出文件清单", str(generated_conclusion_files))) - yield chatbot, history, msg \ No newline at end of file + yield chatbot, history, msg