接入新模型

This commit is contained in:
binary-husky 2023-10-28 19:23:43 +08:00
parent cf085565a7
commit 127385b846
18 changed files with 253 additions and 40 deletions

View File

@ -87,7 +87,7 @@ AVAIL_LLM_MODELS = ["gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
"api2d-gpt-3.5-turbo", 'api2d-gpt-3.5-turbo-16k', "api2d-gpt-3.5-turbo", 'api2d-gpt-3.5-turbo-16k',
"gpt-4", "gpt-4-32k", "azure-gpt-4", "api2d-gpt-4", "gpt-4", "gpt-4-32k", "azure-gpt-4", "api2d-gpt-4",
"chatglm", "moss", "newbing", "claude-2"] "chatglm", "moss", "newbing", "claude-2"]
# P.S. 其他可用的模型还包括 ["qianfan", "llama2", "qwen", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-random" # P.S. 其他可用的模型还包括 ["zhipuai", "qianfan", "llama2", "qwen", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-random"
# "spark", "sparkv2", "sparkv3", "chatglm_onnx", "claude-1-100k", "claude-2", "internlm", "jittorllms_pangualpha", "jittorllms_llama"] # "spark", "sparkv2", "sparkv3", "chatglm_onnx", "claude-1-100k", "claude-2", "internlm", "jittorllms_pangualpha", "jittorllms_llama"]
@ -172,6 +172,11 @@ XFYUN_API_SECRET = "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
XFYUN_API_KEY = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" XFYUN_API_KEY = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
# 接入智谱大模型
ZHIPUAI_API_KEY = ""
ZHIPUAI_MODEL = "chatglm_turbo"
# Claude API KEY # Claude API KEY
ANTHROPIC_API_KEY = "" ANTHROPIC_API_KEY = ""

View File

@ -483,6 +483,22 @@ if "llama2" in AVAIL_LLM_MODELS: # llama2
}) })
except: except:
print(trimmed_format_exc()) print(trimmed_format_exc())
if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai
try:
from .bridge_zhipu import predict_no_ui_long_connection as zhipu_noui
from .bridge_zhipu import predict as zhipu_ui
model_info.update({
"zhipuai": {
"fn_with_ui": zhipu_ui,
"fn_without_ui": zhipu_noui,
"endpoint": None,
"max_token": 4096,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
}
})
except:
print(trimmed_format_exc())
# <-- 用于定义和切换多个azure模型 --> # <-- 用于定义和切换多个azure模型 -->
AZURE_CFG_ARRAY, = get_conf("AZURE_CFG_ARRAY") AZURE_CFG_ARRAY, = get_conf("AZURE_CFG_ARRAY")

View File

@ -155,13 +155,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
history_feedin.append([history[2*i], history[2*i+1]] ) history_feedin.append([history[2*i], history[2*i+1]] )
# 开始接收chatglm的回复 # 开始接收chatglm的回复
response = "[Local Message]: 等待ChatGLM响应中 ..." response = "[Local Message] 等待ChatGLM响应中 ..."
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
chatbot[-1] = (inputs, response) chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history) yield from update_ui(chatbot=chatbot, history=history)
# 总结输出 # 总结输出
if response == "[Local Message]: 等待ChatGLM响应中 ...": if response == "[Local Message] 等待ChatGLM响应中 ...":
response = "[Local Message]: ChatGLM响应异常 ..." response = "[Local Message] ChatGLM响应异常 ..."
history.extend([inputs, response]) history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history) yield from update_ui(chatbot=chatbot, history=history)

View File

@ -195,13 +195,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
history_feedin.append([history[2*i], history[2*i+1]] ) history_feedin.append([history[2*i], history[2*i+1]] )
# 开始接收chatglmft的回复 # 开始接收chatglmft的回复
response = "[Local Message]: 等待ChatGLMFT响应中 ..." response = "[Local Message] 等待ChatGLMFT响应中 ..."
for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
chatbot[-1] = (inputs, response) chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history) yield from update_ui(chatbot=chatbot, history=history)
# 总结输出 # 总结输出
if response == "[Local Message]: 等待ChatGLMFT响应中 ...": if response == "[Local Message] 等待ChatGLMFT响应中 ...":
response = "[Local Message]: ChatGLMFT响应异常 ..." response = "[Local Message] ChatGLMFT响应异常 ..."
history.extend([inputs, response]) history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history) yield from update_ui(chatbot=chatbot, history=history)

View File

@ -163,13 +163,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
history_feedin.append([history[2*i], history[2*i+1]] ) history_feedin.append([history[2*i], history[2*i+1]] )
# 开始接收jittorllms的回复 # 开始接收jittorllms的回复
response = "[Local Message]: 等待jittorllms响应中 ..." response = "[Local Message] 等待jittorllms响应中 ..."
for response in llama_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): for response in llama_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
chatbot[-1] = (inputs, response) chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history) yield from update_ui(chatbot=chatbot, history=history)
# 总结输出 # 总结输出
if response == "[Local Message]: 等待jittorllms响应中 ...": if response == "[Local Message] 等待jittorllms响应中 ...":
response = "[Local Message]: jittorllms响应异常 ..." response = "[Local Message] jittorllms响应异常 ..."
history.extend([inputs, response]) history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history) yield from update_ui(chatbot=chatbot, history=history)

View File

@ -163,13 +163,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
history_feedin.append([history[2*i], history[2*i+1]] ) history_feedin.append([history[2*i], history[2*i+1]] )
# 开始接收jittorllms的回复 # 开始接收jittorllms的回复
response = "[Local Message]: 等待jittorllms响应中 ..." response = "[Local Message] 等待jittorllms响应中 ..."
for response in pangu_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): for response in pangu_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
chatbot[-1] = (inputs, response) chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history) yield from update_ui(chatbot=chatbot, history=history)
# 总结输出 # 总结输出
if response == "[Local Message]: 等待jittorllms响应中 ...": if response == "[Local Message] 等待jittorllms响应中 ...":
response = "[Local Message]: jittorllms响应异常 ..." response = "[Local Message] jittorllms响应异常 ..."
history.extend([inputs, response]) history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history) yield from update_ui(chatbot=chatbot, history=history)

View File

@ -163,13 +163,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
history_feedin.append([history[2*i], history[2*i+1]] ) history_feedin.append([history[2*i], history[2*i+1]] )
# 开始接收jittorllms的回复 # 开始接收jittorllms的回复
response = "[Local Message]: 等待jittorllms响应中 ..." response = "[Local Message] 等待jittorllms响应中 ..."
for response in rwkv_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): for response in rwkv_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
chatbot[-1] = (inputs, response) chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history) yield from update_ui(chatbot=chatbot, history=history)
# 总结输出 # 总结输出
if response == "[Local Message]: 等待jittorllms响应中 ...": if response == "[Local Message] 等待jittorllms响应中 ...":
response = "[Local Message]: jittorllms响应异常 ..." response = "[Local Message] jittorllms响应异常 ..."
history.extend([inputs, response]) history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history) yield from update_ui(chatbot=chatbot, history=history)

View File

@ -219,7 +219,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
moss_handle = None moss_handle = None
return return
else: else:
response = "[Local Message]: 等待MOSS响应中 ..." response = "[Local Message] 等待MOSS响应中 ..."
chatbot[-1] = (inputs, response) chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history) yield from update_ui(chatbot=chatbot, history=history)
@ -238,7 +238,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
yield from update_ui(chatbot=chatbot, history=history) yield from update_ui(chatbot=chatbot, history=history)
# 总结输出 # 总结输出
if response == "[Local Message]: 等待MOSS响应中 ...": if response == "[Local Message] 等待MOSS响应中 ...":
response = "[Local Message]: MOSS响应异常 ..." response = "[Local Message] MOSS响应异常 ..."
history.extend([inputs, response.strip('<|MOSS|>: ')]) history.extend([inputs, response.strip('<|MOSS|>: ')])
yield from update_ui(chatbot=chatbot, history=history) yield from update_ui(chatbot=chatbot, history=history)

View File

@ -199,7 +199,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可 watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
response = "" response = ""
if len(observe_window) >= 1: observe_window[0] = "[Local Message]: 等待NewBing响应中 ..." if len(observe_window) >= 1: observe_window[0] = "[Local Message] 等待NewBing响应中 ..."
for response in newbingfree_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): for response in newbingfree_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
if len(observe_window) >= 1: observe_window[0] = preprocess_newbing_out_simple(response) if len(observe_window) >= 1: observe_window[0] = preprocess_newbing_out_simple(response)
if len(observe_window) >= 2: if len(observe_window) >= 2:
@ -212,7 +212,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
单线程方法 单线程方法
函数的说明请见 request_llms/bridge_all.py 函数的说明请见 request_llms/bridge_all.py
""" """
chatbot.append((inputs, "[Local Message]: 等待NewBing响应中 ...")) chatbot.append((inputs, "[Local Message] 等待NewBing响应中 ..."))
global newbingfree_handle global newbingfree_handle
if (newbingfree_handle is None) or (not newbingfree_handle.success): if (newbingfree_handle is None) or (not newbingfree_handle.success):
@ -231,13 +231,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
for i in range(len(history)//2): for i in range(len(history)//2):
history_feedin.append([history[2*i], history[2*i+1]] ) history_feedin.append([history[2*i], history[2*i+1]] )
chatbot[-1] = (inputs, "[Local Message]: 等待NewBing响应中 ...") chatbot[-1] = (inputs, "[Local Message] 等待NewBing响应中 ...")
response = "[Local Message]: 等待NewBing响应中 ..." response = "[Local Message] 等待NewBing响应中 ..."
yield from update_ui(chatbot=chatbot, history=history, msg="NewBing响应缓慢尚未完成全部响应请耐心完成后再提交新问题。") yield from update_ui(chatbot=chatbot, history=history, msg="NewBing响应缓慢尚未完成全部响应请耐心完成后再提交新问题。")
for response in newbingfree_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): for response in newbingfree_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
chatbot[-1] = (inputs, preprocess_newbing_out(response)) chatbot[-1] = (inputs, preprocess_newbing_out(response))
yield from update_ui(chatbot=chatbot, history=history, msg="NewBing响应缓慢尚未完成全部响应请耐心完成后再提交新问题。") yield from update_ui(chatbot=chatbot, history=history, msg="NewBing响应缓慢尚未完成全部响应请耐心完成后再提交新问题。")
if response == "[Local Message]: 等待NewBing响应中 ...": response = "[Local Message]: NewBing响应异常请刷新界面重试 ..." if response == "[Local Message] 等待NewBing响应中 ...": response = "[Local Message] NewBing响应异常请刷新界面重试 ..."
history.extend([inputs, response]) history.extend([inputs, response])
logging.info(f'[raw_input] {inputs}') logging.info(f'[raw_input] {inputs}')
logging.info(f'[response] {response}') logging.info(f'[response] {response}')

View File

@ -158,8 +158,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
return return
# 总结输出 # 总结输出
response = f"[Local Message]: {model_name}响应异常 ..." response = f"[Local Message] {model_name}响应异常 ..."
if response == f"[Local Message]: 等待{model_name}响应中 ...": if response == f"[Local Message] 等待{model_name}响应中 ...":
response = f"[Local Message]: {model_name}响应异常 ..." response = f"[Local Message] {model_name}响应异常 ..."
history.extend([inputs, response]) history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history) yield from update_ui(chatbot=chatbot, history=history)

View File

@ -42,7 +42,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
yield from update_ui(chatbot=chatbot, history=history) yield from update_ui(chatbot=chatbot, history=history)
if validate_key() is False: if validate_key() is False:
yield from update_ui_lastest_msg(lastmsg="[Local Message]: 请配置讯飞星火大模型的XFYUN_APPID, XFYUN_API_KEY, XFYUN_API_SECRET", chatbot=chatbot, history=history, delay=0) yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置讯飞星火大模型的XFYUN_APPID, XFYUN_API_KEY, XFYUN_API_SECRET", chatbot=chatbot, history=history, delay=0)
return return
if additional_fn is not None: if additional_fn is not None:
@ -57,7 +57,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
yield from update_ui(chatbot=chatbot, history=history) yield from update_ui(chatbot=chatbot, history=history)
# 总结输出 # 总结输出
if response == f"[Local Message]: 等待{model_name}响应中 ...": if response == f"[Local Message] 等待{model_name}响应中 ...":
response = f"[Local Message]: {model_name}响应异常 ..." response = f"[Local Message] {model_name}响应异常 ..."
history.extend([inputs, response]) history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history) yield from update_ui(chatbot=chatbot, history=history)

View File

@ -222,7 +222,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可 watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
response = "" response = ""
observe_window[0] = "[Local Message]: 等待Claude响应中 ..." observe_window[0] = "[Local Message] 等待Claude响应中 ..."
for response in claude_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): for response in claude_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
observe_window[0] = preprocess_newbing_out_simple(response) observe_window[0] = preprocess_newbing_out_simple(response)
if len(observe_window) >= 2: if len(observe_window) >= 2:
@ -236,7 +236,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
单线程方法 单线程方法
函数的说明请见 request_llms/bridge_all.py 函数的说明请见 request_llms/bridge_all.py
""" """
chatbot.append((inputs, "[Local Message]: 等待Claude响应中 ...")) chatbot.append((inputs, "[Local Message] 等待Claude响应中 ..."))
global claude_handle global claude_handle
if (claude_handle is None) or (not claude_handle.success): if (claude_handle is None) or (not claude_handle.success):
@ -255,14 +255,14 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
for i in range(len(history)//2): for i in range(len(history)//2):
history_feedin.append([history[2*i], history[2*i+1]]) history_feedin.append([history[2*i], history[2*i+1]])
chatbot[-1] = (inputs, "[Local Message]: 等待Claude响应中 ...") chatbot[-1] = (inputs, "[Local Message] 等待Claude响应中 ...")
response = "[Local Message]: 等待Claude响应中 ..." response = "[Local Message] 等待Claude响应中 ..."
yield from update_ui(chatbot=chatbot, history=history, msg="Claude响应缓慢尚未完成全部响应请耐心完成后再提交新问题。") yield from update_ui(chatbot=chatbot, history=history, msg="Claude响应缓慢尚未完成全部响应请耐心完成后再提交新问题。")
for response in claude_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt): for response in claude_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt):
chatbot[-1] = (inputs, preprocess_newbing_out(response)) chatbot[-1] = (inputs, preprocess_newbing_out(response))
yield from update_ui(chatbot=chatbot, history=history, msg="Claude响应缓慢尚未完成全部响应请耐心完成后再提交新问题。") yield from update_ui(chatbot=chatbot, history=history, msg="Claude响应缓慢尚未完成全部响应请耐心完成后再提交新问题。")
if response == "[Local Message]: 等待Claude响应中 ...": if response == "[Local Message] 等待Claude响应中 ...":
response = "[Local Message]: Claude响应异常请刷新界面重试 ..." response = "[Local Message] Claude响应异常请刷新界面重试 ..."
history.extend([inputs, response]) history.extend([inputs, response])
logging.info(f'[raw_input] {inputs}') logging.info(f'[raw_input] {inputs}')
logging.info(f'[response] {response}') logging.info(f'[response] {response}')

View File

@ -0,0 +1,59 @@
import time
from toolbox import update_ui, get_conf, update_ui_lastest_msg
model_name = '智谱AI大模型'
def validate_key():
ZHIPUAI_API_KEY, = get_conf("ZHIPUAI_API_KEY")
if ZHIPUAI_API_KEY == '': return False
return True
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
"""
多线程方法
函数的说明请见 request_llms/bridge_all.py
"""
watch_dog_patience = 5
response = ""
if validate_key() is False:
raise RuntimeError('请配置ZHIPUAI_API_KEY')
from .com_zhipuapi import ZhipuRequestInstance
sri = ZhipuRequestInstance()
for response in sri.generate(inputs, llm_kwargs, history, sys_prompt):
if len(observe_window) >= 1:
observe_window[0] = response
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。")
return response
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
单线程方法
函数的说明请见 request_llms/bridge_all.py
"""
chatbot.append((inputs, ""))
yield from update_ui(chatbot=chatbot, history=history)
if validate_key() is False:
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置ZHIPUAI_API_KEY", chatbot=chatbot, history=history, delay=0)
return
if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
# 开始接收回复
from .com_zhipuapi import ZhipuRequestInstance
sri = ZhipuRequestInstance()
for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)
# 总结输出
if response == f"[Local Message] 等待{model_name}响应中 ...":
response = f"[Local Message] {model_name}响应异常 ..."
history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history)

View File

@ -0,0 +1,67 @@
from toolbox import get_conf
import threading
import logging
timeout_bot_msg = '[Local Message] Request timeout. Network error.'
class ZhipuRequestInstance():
def __init__(self):
self.time_to_yield_event = threading.Event()
self.time_to_exit_event = threading.Event()
self.result_buf = ""
def generate(self, inputs, llm_kwargs, history, system_prompt):
# import _thread as thread
import zhipuai
ZHIPUAI_API_KEY, ZHIPUAI_MODEL = get_conf("ZHIPUAI_API_KEY", "ZHIPUAI_MODEL")
zhipuai.api_key = ZHIPUAI_API_KEY
self.result_buf = ""
response = zhipuai.model_api.sse_invoke(
model=ZHIPUAI_MODEL,
prompt=generate_message_payload(inputs, llm_kwargs, history, system_prompt),
top_p=llm_kwargs['top_p'],
temperature=llm_kwargs['temperature'],
)
for event in response.events():
if event.event == "add":
self.result_buf += event.data
yield self.result_buf
elif event.event == "error" or event.event == "interrupted":
raise RuntimeError("Unknown error:" + event.data)
elif event.event == "finish":
yield self.result_buf
break
else:
raise RuntimeError("Unknown error:" + str(event))
logging.info(f'[raw_input] {inputs}')
logging.info(f'[response] {self.result_buf}')
return self.result_buf
def generate_message_payload(inputs, llm_kwargs, history, system_prompt):
conversation_cnt = len(history) // 2
messages = [{"role": "user", "content": system_prompt}, {"role": "assistant", "content": "Certainly!"}]
if conversation_cnt:
for index in range(0, 2*conversation_cnt, 2):
what_i_have_asked = {}
what_i_have_asked["role"] = "user"
what_i_have_asked["content"] = history[index]
what_gpt_answer = {}
what_gpt_answer["role"] = "assistant"
what_gpt_answer["content"] = history[index+1]
if what_i_have_asked["content"] != "":
if what_gpt_answer["content"] == "":
continue
if what_gpt_answer["content"] == timeout_bot_msg:
continue
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
else:
messages[-1]['content'] = what_gpt_answer['content']
what_i_ask_now = {}
what_i_ask_now["role"] = "user"
what_i_ask_now["content"] = inputs
messages.append(what_i_ask_now)
return messages

View File

@ -166,14 +166,14 @@ def get_local_llm_predict_fns(LLMSingletonClass, model_name):
history_feedin.append([history[2*i], history[2*i+1]] ) history_feedin.append([history[2*i], history[2*i+1]] )
# 开始接收回复 # 开始接收回复
response = f"[Local Message]: 等待{model_name}响应中 ..." response = f"[Local Message] 等待{model_name}响应中 ..."
for response in _llm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): for response in _llm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
chatbot[-1] = (inputs, response) chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history) yield from update_ui(chatbot=chatbot, history=history)
# 总结输出 # 总结输出
if response == f"[Local Message]: 等待{model_name}响应中 ...": if response == f"[Local Message] 等待{model_name}响应中 ...":
response = f"[Local Message]: {model_name}响应异常 ..." response = f"[Local Message] {model_name}响应异常 ..."
history.extend([inputs, response]) history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history) yield from update_ui(chatbot=chatbot, history=history)

View File

@ -17,7 +17,8 @@ if __name__ == "__main__":
# from request_llms.bridge_claude import predict_no_ui_long_connection # from request_llms.bridge_claude import predict_no_ui_long_connection
# from request_llms.bridge_internlm import predict_no_ui_long_connection # from request_llms.bridge_internlm import predict_no_ui_long_connection
# from request_llms.bridge_qwen import predict_no_ui_long_connection # from request_llms.bridge_qwen import predict_no_ui_long_connection
from request_llms.bridge_spark import predict_no_ui_long_connection # from request_llms.bridge_spark import predict_no_ui_long_connection
from request_llms.bridge_zhipu import predict_no_ui_long_connection
llm_kwargs = { llm_kwargs = {
'max_length': 4096, 'max_length': 4096,

44
tests/test_markdown.py Normal file
View File

@ -0,0 +1,44 @@
md = """
作为您的写作和编程助手我可以为您提供以下服务
1. 写作
- 帮助您撰写文章报告散文故事等
- 提供写作建议和技巧
- 协助您进行文案策划和内容创作
2. 编程
- 帮助您解决编程问题提供编程思路和建议
- 协助您编写代码包括但不限于 PythonJavaC++
- 为您解释复杂的技术概念让您更容易理解
3. 项目支持
- 协助您规划项目进度和任务分配
- 提供项目管理和协作建议
- 在项目实施过程中提供支持确保项目顺利进行
4. 学习辅导
- 帮助您巩固编程基础提高编程能力
- 提供计算机科学数据科学人工智能等相关领域的学习资源和建议
- 解答您在学习过程中遇到的问题让您更好地掌握知识
5. 行业动态和趋势分析
- 为您提供业界最新的新闻和技术趋势
- 分析行业动态帮助您了解市场发展和竞争态势
- 为您制定技术战略提供参考和建议
请随时告诉我您的需求我会尽力提供帮助如果您有任何问题或需要解答的议题请随时提问
"""
def validate_path():
import os, sys
dir_name = os.path.dirname(__file__)
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
os.chdir(root_dir_assume)
sys.path.append(root_dir_assume)
validate_path() # validate path so you can run from base directory
from toolbox import markdown_convertion
html = markdown_convertion(md)
print(html)
with open('test.html', 'w', encoding='utf-8') as f:
f.write(html)

View File

@ -7,6 +7,7 @@ import os
import gradio import gradio
import shutil import shutil
import glob import glob
import math
from latex2mathml.converter import convert as tex2mathml from latex2mathml.converter import convert as tex2mathml
from functools import wraps, lru_cache from functools import wraps, lru_cache
pj = os.path.join pj = os.path.join
@ -372,6 +373,26 @@ def markdown_convertion(txt):
contain_any_eq = True contain_any_eq = True
return contain_any_eq return contain_any_eq
def fix_markdown_indent(txt):
# fix markdown indent
if (' - ' not in txt) or ('. ' not in txt):
return txt # do not need to fix, fast escape
# walk through the lines and fix non-standard indentation
lines = txt.split("\n")
pattern = re.compile(r'^\s+-')
activated = False
for i, line in enumerate(lines):
if line.startswith('- ') or line.startswith('1. '):
activated = True
if activated and pattern.match(line):
stripped_string = line.lstrip()
num_spaces = len(line) - len(stripped_string)
if (num_spaces % 4) == 3:
num_spaces_should_be = math.ceil(num_spaces/4) * 4
lines[i] = ' ' * num_spaces_should_be + stripped_string
return '\n'.join(lines)
txt = fix_markdown_indent(txt)
if is_equation(txt): # 有$标识的公式符号,且没有代码段```的标识 if is_equation(txt): # 有$标识的公式符号,且没有代码段```的标识
# convert everything to html format # convert everything to html format
split = markdown.markdown(text='---') split = markdown.markdown(text='---')