better local model interaction
This commit is contained in:
parent
08f036aafd
commit
136162ec0d
@ -1,42 +1,29 @@
|
|||||||
|
model_name = "ChatGLM"
|
||||||
|
cmd_to_install = "`pip install -r request_llms/requirements_chatglm.txt`"
|
||||||
|
|
||||||
|
|
||||||
from transformers import AutoModel, AutoTokenizer
|
from transformers import AutoModel, AutoTokenizer
|
||||||
import time
|
from toolbox import get_conf, ProxyNetworkActivate
|
||||||
import threading
|
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns, SingletonLocalLLM
|
||||||
import importlib
|
|
||||||
from toolbox import update_ui, get_conf, ProxyNetworkActivate
|
|
||||||
from multiprocessing import Process, Pipe
|
|
||||||
|
|
||||||
load_message = "ChatGLM尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLM消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
|
||||||
|
|
||||||
#################################################################################
|
|
||||||
class GetGLMHandle(Process):
|
|
||||||
def __init__(self):
|
|
||||||
super().__init__(daemon=True)
|
|
||||||
self.parent, self.child = Pipe()
|
|
||||||
self.chatglm_model = None
|
|
||||||
self.chatglm_tokenizer = None
|
|
||||||
self.info = ""
|
|
||||||
self.success = True
|
|
||||||
self.check_dependency()
|
|
||||||
self.start()
|
|
||||||
self.threadLock = threading.Lock()
|
|
||||||
|
|
||||||
def check_dependency(self):
|
|
||||||
try:
|
|
||||||
import sentencepiece
|
|
||||||
self.info = "依赖检测通过"
|
|
||||||
self.success = True
|
|
||||||
except:
|
|
||||||
self.info = "缺少ChatGLM的依赖,如果要使用ChatGLM,除了基础的pip依赖以外,您还需要运行`pip install -r request_llms/requirements_chatglm.txt`安装ChatGLM的依赖。"
|
|
||||||
self.success = False
|
|
||||||
|
|
||||||
def ready(self):
|
# ------------------------------------------------------------------------------------------------------------------------
|
||||||
return self.chatglm_model is not None
|
# 🔌💻 Local Model
|
||||||
|
# ------------------------------------------------------------------------------------------------------------------------
|
||||||
|
@SingletonLocalLLM
|
||||||
|
class GetGLM2Handle(LocalLLMHandle):
|
||||||
|
|
||||||
def run(self):
|
def load_model_info(self):
|
||||||
# 子进程执行
|
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||||
# 第一次运行,加载参数
|
self.model_name = model_name
|
||||||
retry = 0
|
self.cmd_to_install = cmd_to_install
|
||||||
|
|
||||||
|
def load_model_and_tokenizer(self):
|
||||||
|
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||||
|
import os, glob
|
||||||
|
import os
|
||||||
|
import platform
|
||||||
LOCAL_MODEL_QUANT, device = get_conf('LOCAL_MODEL_QUANT', 'LOCAL_MODEL_DEVICE')
|
LOCAL_MODEL_QUANT, device = get_conf('LOCAL_MODEL_QUANT', 'LOCAL_MODEL_DEVICE')
|
||||||
|
|
||||||
if LOCAL_MODEL_QUANT == "INT4": # INT4
|
if LOCAL_MODEL_QUANT == "INT4": # INT4
|
||||||
@ -46,122 +33,47 @@ class GetGLMHandle(Process):
|
|||||||
else:
|
else:
|
||||||
_model_name_ = "THUDM/chatglm2-6b" # FP16
|
_model_name_ = "THUDM/chatglm2-6b" # FP16
|
||||||
|
|
||||||
while True:
|
with ProxyNetworkActivate('Download_LLM'):
|
||||||
try:
|
chatglm_tokenizer = AutoTokenizer.from_pretrained(_model_name_, trust_remote_code=True)
|
||||||
with ProxyNetworkActivate('Download_LLM'):
|
if device=='cpu':
|
||||||
if self.chatglm_model is None:
|
chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).float()
|
||||||
self.chatglm_tokenizer = AutoTokenizer.from_pretrained(_model_name_, trust_remote_code=True)
|
|
||||||
if device=='cpu':
|
|
||||||
self.chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).float()
|
|
||||||
else:
|
|
||||||
self.chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).half().cuda()
|
|
||||||
self.chatglm_model = self.chatglm_model.eval()
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
break
|
|
||||||
except:
|
|
||||||
retry += 1
|
|
||||||
if retry > 3:
|
|
||||||
self.child.send('[Local Message] Call ChatGLM fail 不能正常加载ChatGLM的参数。')
|
|
||||||
raise RuntimeError("不能正常加载ChatGLM的参数!")
|
|
||||||
|
|
||||||
while True:
|
|
||||||
# 进入任务等待状态
|
|
||||||
kwargs = self.child.recv()
|
|
||||||
# 收到消息,开始请求
|
|
||||||
try:
|
|
||||||
for response, history in self.chatglm_model.stream_chat(self.chatglm_tokenizer, **kwargs):
|
|
||||||
self.child.send(response)
|
|
||||||
# # 中途接收可能的终止指令(如果有的话)
|
|
||||||
# if self.child.poll():
|
|
||||||
# command = self.child.recv()
|
|
||||||
# if command == '[Terminate]': break
|
|
||||||
except:
|
|
||||||
from toolbox import trimmed_format_exc
|
|
||||||
self.child.send('[Local Message] Call ChatGLM fail.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
|
|
||||||
# 请求处理结束,开始下一个循环
|
|
||||||
self.child.send('[Finish]')
|
|
||||||
|
|
||||||
def stream_chat(self, **kwargs):
|
|
||||||
# 主进程执行
|
|
||||||
self.threadLock.acquire()
|
|
||||||
self.parent.send(kwargs)
|
|
||||||
while True:
|
|
||||||
res = self.parent.recv()
|
|
||||||
if res != '[Finish]':
|
|
||||||
yield res
|
|
||||||
else:
|
else:
|
||||||
break
|
chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).half().cuda()
|
||||||
self.threadLock.release()
|
chatglm_model = chatglm_model.eval()
|
||||||
|
|
||||||
global glm_handle
|
|
||||||
glm_handle = None
|
|
||||||
#################################################################################
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
|
||||||
"""
|
|
||||||
多线程方法
|
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
|
||||||
"""
|
|
||||||
global glm_handle
|
|
||||||
if glm_handle is None:
|
|
||||||
glm_handle = GetGLMHandle()
|
|
||||||
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + glm_handle.info
|
|
||||||
if not glm_handle.success:
|
|
||||||
error = glm_handle.info
|
|
||||||
glm_handle = None
|
|
||||||
raise RuntimeError(error)
|
|
||||||
|
|
||||||
# chatglm 没有 sys_prompt 接口,因此把prompt加入 history
|
self._model = chatglm_model
|
||||||
history_feedin = []
|
self._tokenizer = chatglm_tokenizer
|
||||||
history_feedin.append(["What can I do?", sys_prompt])
|
return self._model, self._tokenizer
|
||||||
for i in range(len(history)//2):
|
|
||||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
|
||||||
|
|
||||||
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
def llm_stream_generator(self, **kwargs):
|
||||||
response = ""
|
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||||
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
def adaptor(kwargs):
|
||||||
if len(observe_window) >= 1: observe_window[0] = response
|
query = kwargs['query']
|
||||||
if len(observe_window) >= 2:
|
max_length = kwargs['max_length']
|
||||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
top_p = kwargs['top_p']
|
||||||
raise RuntimeError("程序终止。")
|
temperature = kwargs['temperature']
|
||||||
return response
|
history = kwargs['history']
|
||||||
|
return query, max_length, top_p, temperature, history
|
||||||
|
|
||||||
|
query, max_length, top_p, temperature, history = adaptor(kwargs)
|
||||||
|
|
||||||
|
for response, history in self._model.stream_chat(self._tokenizer,
|
||||||
|
query,
|
||||||
|
history,
|
||||||
|
max_length=max_length,
|
||||||
|
top_p=top_p,
|
||||||
|
temperature=temperature,
|
||||||
|
):
|
||||||
|
yield response
|
||||||
|
|
||||||
|
def try_to_import_special_deps(self, **kwargs):
|
||||||
|
# import something that will raise error if the user does not install requirement_*.txt
|
||||||
|
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
||||||
|
import importlib
|
||||||
|
# importlib.import_module('modelscope')
|
||||||
|
|
||||||
|
|
||||||
|
# ------------------------------------------------------------------------------------------------------------------------
|
||||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
# 🔌💻 GPT-Academic Interface
|
||||||
"""
|
# ------------------------------------------------------------------------------------------------------------------------
|
||||||
单线程方法
|
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetGLM2Handle, model_name)
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
|
||||||
"""
|
|
||||||
chatbot.append((inputs, ""))
|
|
||||||
|
|
||||||
global glm_handle
|
|
||||||
if glm_handle is None:
|
|
||||||
glm_handle = GetGLMHandle()
|
|
||||||
chatbot[-1] = (inputs, load_message + "\n\n" + glm_handle.info)
|
|
||||||
yield from update_ui(chatbot=chatbot, history=[])
|
|
||||||
if not glm_handle.success:
|
|
||||||
glm_handle = None
|
|
||||||
return
|
|
||||||
|
|
||||||
if additional_fn is not None:
|
|
||||||
from core_functional import handle_core_functionality
|
|
||||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
|
||||||
|
|
||||||
# 处理历史信息
|
|
||||||
history_feedin = []
|
|
||||||
history_feedin.append(["What can I do?", system_prompt] )
|
|
||||||
for i in range(len(history)//2):
|
|
||||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
|
||||||
|
|
||||||
# 开始接收chatglm的回复
|
|
||||||
response = "[Local Message] 等待ChatGLM响应中 ..."
|
|
||||||
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
|
||||||
chatbot[-1] = (inputs, response)
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
|
||||||
|
|
||||||
# 总结输出
|
|
||||||
if response == "[Local Message] 等待ChatGLM响应中 ...":
|
|
||||||
response = "[Local Message] ChatGLM响应异常 ..."
|
|
||||||
history.extend([inputs, response])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
|
@ -12,7 +12,7 @@ from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns, Singleto
|
|||||||
# 🔌💻 Local Model
|
# 🔌💻 Local Model
|
||||||
# ------------------------------------------------------------------------------------------------------------------------
|
# ------------------------------------------------------------------------------------------------------------------------
|
||||||
@SingletonLocalLLM
|
@SingletonLocalLLM
|
||||||
class GetONNXGLMHandle(LocalLLMHandle):
|
class GetGLM3Handle(LocalLLMHandle):
|
||||||
|
|
||||||
def load_model_info(self):
|
def load_model_info(self):
|
||||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||||
@ -69,10 +69,10 @@ class GetONNXGLMHandle(LocalLLMHandle):
|
|||||||
# import something that will raise error if the user does not install requirement_*.txt
|
# import something that will raise error if the user does not install requirement_*.txt
|
||||||
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
||||||
import importlib
|
import importlib
|
||||||
importlib.import_module('modelscope')
|
# importlib.import_module('modelscope')
|
||||||
|
|
||||||
|
|
||||||
# ------------------------------------------------------------------------------------------------------------------------
|
# ------------------------------------------------------------------------------------------------------------------------
|
||||||
# 🔌💻 GPT-Academic Interface
|
# 🔌💻 GPT-Academic Interface
|
||||||
# ------------------------------------------------------------------------------------------------------------------------
|
# ------------------------------------------------------------------------------------------------------------------------
|
||||||
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetONNXGLMHandle, model_name, history_format='chatglm3')
|
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetGLM3Handle, model_name, history_format='chatglm3')
|
@ -1,15 +1,16 @@
|
|||||||
from transformers import AutoModel, AutoTokenizer
|
|
||||||
import time
|
import time
|
||||||
import threading
|
import threading
|
||||||
import importlib
|
from toolbox import update_ui
|
||||||
from toolbox import update_ui, get_conf, Singleton
|
|
||||||
from multiprocessing import Process, Pipe
|
from multiprocessing import Process, Pipe
|
||||||
|
from contextlib import redirect_stdout
|
||||||
|
|
||||||
|
|
||||||
def SingletonLocalLLM(cls):
|
def SingletonLocalLLM(cls):
|
||||||
"""
|
"""
|
||||||
一个单实例装饰器
|
一个单实例装饰器
|
||||||
"""
|
"""
|
||||||
_instance = {}
|
_instance = {}
|
||||||
|
|
||||||
def _singleton(*args, **kargs):
|
def _singleton(*args, **kargs):
|
||||||
if cls not in _instance:
|
if cls not in _instance:
|
||||||
_instance[cls] = cls(*args, **kargs)
|
_instance[cls] = cls(*args, **kargs)
|
||||||
@ -21,6 +22,28 @@ def SingletonLocalLLM(cls):
|
|||||||
return _instance[cls]
|
return _instance[cls]
|
||||||
return _singleton
|
return _singleton
|
||||||
|
|
||||||
|
|
||||||
|
def reset_tqdm_output():
|
||||||
|
import sys, tqdm
|
||||||
|
def status_printer(self, file):
|
||||||
|
fp = file
|
||||||
|
if fp in (sys.stderr, sys.stdout):
|
||||||
|
getattr(sys.stderr, 'flush', lambda: None)()
|
||||||
|
getattr(sys.stdout, 'flush', lambda: None)()
|
||||||
|
|
||||||
|
def fp_write(s):
|
||||||
|
print(s)
|
||||||
|
last_len = [0]
|
||||||
|
|
||||||
|
def print_status(s):
|
||||||
|
from tqdm.utils import disp_len
|
||||||
|
len_s = disp_len(s)
|
||||||
|
fp_write('\r' + s + (' ' * max(last_len[0] - len_s, 0)))
|
||||||
|
last_len[0] = len_s
|
||||||
|
return print_status
|
||||||
|
tqdm.tqdm.status_printer = status_printer
|
||||||
|
|
||||||
|
|
||||||
class LocalLLMHandle(Process):
|
class LocalLLMHandle(Process):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
# ⭐主进程执行
|
# ⭐主进程执行
|
||||||
@ -28,6 +51,9 @@ class LocalLLMHandle(Process):
|
|||||||
self.corrupted = False
|
self.corrupted = False
|
||||||
self.load_model_info()
|
self.load_model_info()
|
||||||
self.parent, self.child = Pipe()
|
self.parent, self.child = Pipe()
|
||||||
|
# allow redirect_stdout
|
||||||
|
self.std_tag = "[Subprocess Message] "
|
||||||
|
self.child.write = lambda x: self.child.send(self.std_tag + x)
|
||||||
self.running = True
|
self.running = True
|
||||||
self._model = None
|
self._model = None
|
||||||
self._tokenizer = None
|
self._tokenizer = None
|
||||||
@ -52,7 +78,7 @@ class LocalLLMHandle(Process):
|
|||||||
def llm_stream_generator(self, **kwargs):
|
def llm_stream_generator(self, **kwargs):
|
||||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||||
raise NotImplementedError("Method not implemented yet")
|
raise NotImplementedError("Method not implemented yet")
|
||||||
|
|
||||||
def try_to_import_special_deps(self, **kwargs):
|
def try_to_import_special_deps(self, **kwargs):
|
||||||
"""
|
"""
|
||||||
import something that will raise error if the user does not install requirement_*.txt
|
import something that will raise error if the user does not install requirement_*.txt
|
||||||
@ -64,7 +90,7 @@ class LocalLLMHandle(Process):
|
|||||||
# ⭐主进程执行
|
# ⭐主进程执行
|
||||||
try:
|
try:
|
||||||
self.try_to_import_special_deps()
|
self.try_to_import_special_deps()
|
||||||
self.info = "依赖检测通过"
|
self.info = "`依赖检测通过`"
|
||||||
self.running = True
|
self.running = True
|
||||||
except:
|
except:
|
||||||
self.info = f"缺少{self.model_name}的依赖,如果要使用{self.model_name},除了基础的pip依赖以外,您还需要运行{self.cmd_to_install}安装{self.model_name}的依赖。"
|
self.info = f"缺少{self.model_name}的依赖,如果要使用{self.model_name},除了基础的pip依赖以外,您还需要运行{self.cmd_to_install}安装{self.model_name}的依赖。"
|
||||||
@ -73,15 +99,21 @@ class LocalLLMHandle(Process):
|
|||||||
def run(self):
|
def run(self):
|
||||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||||
# 第一次运行,加载参数
|
# 第一次运行,加载参数
|
||||||
|
reset_tqdm_output()
|
||||||
|
self.info = "`尝试加载模型`"
|
||||||
try:
|
try:
|
||||||
self._model, self._tokenizer = self.load_model_and_tokenizer()
|
with redirect_stdout(self.child):
|
||||||
|
self._model, self._tokenizer = self.load_model_and_tokenizer()
|
||||||
except:
|
except:
|
||||||
|
self.info = "`加载模型失败`"
|
||||||
self.running = False
|
self.running = False
|
||||||
from toolbox import trimmed_format_exc
|
from toolbox import trimmed_format_exc
|
||||||
self.child.send(f'[Local Message] 不能正常加载{self.model_name}的参数.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
|
self.child.send(
|
||||||
|
f'[Local Message] 不能正常加载{self.model_name}的参数.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
|
||||||
self.child.send('[FinishBad]')
|
self.child.send('[FinishBad]')
|
||||||
raise RuntimeError(f"不能正常加载{self.model_name}的参数!")
|
raise RuntimeError(f"不能正常加载{self.model_name}的参数!")
|
||||||
|
|
||||||
|
self.info = "`准备就绪`"
|
||||||
while True:
|
while True:
|
||||||
# 进入任务等待状态
|
# 进入任务等待状态
|
||||||
kwargs = self.child.recv()
|
kwargs = self.child.recv()
|
||||||
@ -93,25 +125,35 @@ class LocalLLMHandle(Process):
|
|||||||
# 请求处理结束,开始下一个循环
|
# 请求处理结束,开始下一个循环
|
||||||
except:
|
except:
|
||||||
from toolbox import trimmed_format_exc
|
from toolbox import trimmed_format_exc
|
||||||
self.child.send(f'[Local Message] 调用{self.model_name}失败.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
|
self.child.send(
|
||||||
|
f'[Local Message] 调用{self.model_name}失败.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
|
||||||
self.child.send('[Finish]')
|
self.child.send('[Finish]')
|
||||||
|
|
||||||
def stream_chat(self, **kwargs):
|
def stream_chat(self, **kwargs):
|
||||||
# ⭐主进程执行
|
# ⭐主进程执行
|
||||||
self.threadLock.acquire()
|
if self.info == "`准备就绪`":
|
||||||
self.parent.send(kwargs)
|
yield "`正在等待线程锁,排队中请稍后 ...`"
|
||||||
while True:
|
with self.threadLock:
|
||||||
res = self.parent.recv()
|
self.parent.send(kwargs)
|
||||||
if res == '[Finish]':
|
std_out = ""
|
||||||
break
|
std_out_clip_len = 4096
|
||||||
if res == '[FinishBad]':
|
while True:
|
||||||
self.running = False
|
res = self.parent.recv()
|
||||||
self.corrupted = True
|
if res.startswith(self.std_tag):
|
||||||
break
|
new_output = res[len(self.std_tag):]
|
||||||
else:
|
std_out = std_out[:std_out_clip_len]
|
||||||
yield res
|
print(new_output, end='')
|
||||||
self.threadLock.release()
|
std_out = new_output + std_out
|
||||||
|
yield self.std_tag + '\n```\n' + std_out + '\n```\n'
|
||||||
|
elif res == '[Finish]':
|
||||||
|
break
|
||||||
|
elif res == '[FinishBad]':
|
||||||
|
self.running = False
|
||||||
|
self.corrupted = True
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
std_out = ""
|
||||||
|
yield res
|
||||||
|
|
||||||
|
|
||||||
def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='classic'):
|
def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='classic'):
|
||||||
@ -123,15 +165,17 @@ def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='cla
|
|||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
"""
|
"""
|
||||||
_llm_handle = LLMSingletonClass()
|
_llm_handle = LLMSingletonClass()
|
||||||
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + _llm_handle.info
|
if len(observe_window) >= 1:
|
||||||
if not _llm_handle.running: raise RuntimeError(_llm_handle.info)
|
observe_window[0] = load_message + "\n\n" + _llm_handle.info
|
||||||
|
if not _llm_handle.running:
|
||||||
|
raise RuntimeError(_llm_handle.info)
|
||||||
|
|
||||||
if history_format == 'classic':
|
if history_format == 'classic':
|
||||||
# 没有 sys_prompt 接口,因此把prompt加入 history
|
# 没有 sys_prompt 接口,因此把prompt加入 history
|
||||||
history_feedin = []
|
history_feedin = []
|
||||||
history_feedin.append([sys_prompt, "Certainly!"])
|
history_feedin.append([sys_prompt, "Certainly!"])
|
||||||
for i in range(len(history)//2):
|
for i in range(len(history)//2):
|
||||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
history_feedin.append([history[2*i], history[2*i+1]])
|
||||||
elif history_format == 'chatglm3':
|
elif history_format == 'chatglm3':
|
||||||
# 有 sys_prompt 接口
|
# 有 sys_prompt 接口
|
||||||
conversation_cnt = len(history) // 2
|
conversation_cnt = len(history) // 2
|
||||||
@ -145,24 +189,24 @@ def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='cla
|
|||||||
what_gpt_answer["role"] = "assistant"
|
what_gpt_answer["role"] = "assistant"
|
||||||
what_gpt_answer["content"] = history[index+1]
|
what_gpt_answer["content"] = history[index+1]
|
||||||
if what_i_have_asked["content"] != "":
|
if what_i_have_asked["content"] != "":
|
||||||
if what_gpt_answer["content"] == "": continue
|
if what_gpt_answer["content"] == "":
|
||||||
|
continue
|
||||||
history_feedin.append(what_i_have_asked)
|
history_feedin.append(what_i_have_asked)
|
||||||
history_feedin.append(what_gpt_answer)
|
history_feedin.append(what_gpt_answer)
|
||||||
else:
|
else:
|
||||||
history_feedin[-1]['content'] = what_gpt_answer['content']
|
history_feedin[-1]['content'] = what_gpt_answer['content']
|
||||||
|
|
||||||
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
||||||
response = ""
|
response = ""
|
||||||
for response in _llm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
for response in _llm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||||
if len(observe_window) >= 1:
|
if len(observe_window) >= 1:
|
||||||
observe_window[0] = response
|
observe_window[0] = response
|
||||||
if len(observe_window) >= 2:
|
if len(observe_window) >= 2:
|
||||||
if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。")
|
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||||
|
raise RuntimeError("程序终止。")
|
||||||
return response
|
return response
|
||||||
|
|
||||||
|
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
|
||||||
|
|
||||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
|
||||||
"""
|
"""
|
||||||
⭐单线程方法
|
⭐单线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
@ -172,11 +216,13 @@ def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='cla
|
|||||||
_llm_handle = LLMSingletonClass()
|
_llm_handle = LLMSingletonClass()
|
||||||
chatbot[-1] = (inputs, load_message + "\n\n" + _llm_handle.info)
|
chatbot[-1] = (inputs, load_message + "\n\n" + _llm_handle.info)
|
||||||
yield from update_ui(chatbot=chatbot, history=[])
|
yield from update_ui(chatbot=chatbot, history=[])
|
||||||
if not _llm_handle.running: raise RuntimeError(_llm_handle.info)
|
if not _llm_handle.running:
|
||||||
|
raise RuntimeError(_llm_handle.info)
|
||||||
|
|
||||||
if additional_fn is not None:
|
if additional_fn is not None:
|
||||||
from core_functional import handle_core_functionality
|
from core_functional import handle_core_functionality
|
||||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
inputs, history = handle_core_functionality(
|
||||||
|
additional_fn, inputs, history, chatbot)
|
||||||
|
|
||||||
# 处理历史信息
|
# 处理历史信息
|
||||||
if history_format == 'classic':
|
if history_format == 'classic':
|
||||||
@ -184,7 +230,7 @@ def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='cla
|
|||||||
history_feedin = []
|
history_feedin = []
|
||||||
history_feedin.append([system_prompt, "Certainly!"])
|
history_feedin.append([system_prompt, "Certainly!"])
|
||||||
for i in range(len(history)//2):
|
for i in range(len(history)//2):
|
||||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
history_feedin.append([history[2*i], history[2*i+1]])
|
||||||
elif history_format == 'chatglm3':
|
elif history_format == 'chatglm3':
|
||||||
# 有 sys_prompt 接口
|
# 有 sys_prompt 接口
|
||||||
conversation_cnt = len(history) // 2
|
conversation_cnt = len(history) // 2
|
||||||
@ -198,7 +244,8 @@ def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='cla
|
|||||||
what_gpt_answer["role"] = "assistant"
|
what_gpt_answer["role"] = "assistant"
|
||||||
what_gpt_answer["content"] = history[index+1]
|
what_gpt_answer["content"] = history[index+1]
|
||||||
if what_i_have_asked["content"] != "":
|
if what_i_have_asked["content"] != "":
|
||||||
if what_gpt_answer["content"] == "": continue
|
if what_gpt_answer["content"] == "":
|
||||||
|
continue
|
||||||
history_feedin.append(what_i_have_asked)
|
history_feedin.append(what_i_have_asked)
|
||||||
history_feedin.append(what_gpt_answer)
|
history_feedin.append(what_gpt_answer)
|
||||||
else:
|
else:
|
||||||
@ -216,4 +263,4 @@ def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='cla
|
|||||||
history.extend([inputs, response])
|
history.extend([inputs, response])
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
|
||||||
return predict_no_ui_long_connection, predict
|
return predict_no_ui_long_connection, predict
|
||||||
|
Loading…
x
Reference in New Issue
Block a user