This commit is contained in:
Your Name 2023-04-03 01:08:01 +08:00
parent fff7b8ef91
commit 168f25115b
14 changed files with 80 additions and 323 deletions

View File

@ -40,6 +40,9 @@ set_theme = adjust_theme()
cancel_handles = []
with gr.Blocks(theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
gr.HTML(title_html)
# To add a Duplicate Space badge
gr.HTML('''<center><a href="https://huggingface.co/spaces/qingxu98/gpt-academic?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>请您打开此页面后务必点击上方的“复制空间”Duplicate Space按钮<br/>切忌在“复制空间”Duplicate Space之前填入API_KEY或进行提问否则您的API_KEY将极可能被空间所有者攫取</center>''')
with gr.Row().style(equal_height=True):
with gr.Column(scale=2):
chatbot = gr.Chatbot()
@ -47,7 +50,9 @@ with gr.Blocks(theme=set_theme, analytics_enabled=False, css=advanced_css) as de
history = gr.State([])
with gr.Column(scale=1):
with gr.Row():
txt = gr.Textbox(show_label=False, placeholder="Input question here.").style(container=False)
api_key = gr.Textbox(show_label=False, placeholder="输入API_KEY输入后自动生效.").style(container=False)
with gr.Row():
txt = gr.Textbox(show_label=False, placeholder="输入问题.").style(container=False)
with gr.Row():
submitBtn = gr.Button("提交", variant="primary")
with gr.Row():
@ -93,7 +98,7 @@ with gr.Blocks(theme=set_theme, analytics_enabled=False, css=advanced_css) as de
return ret
checkboxes.select(fn_area_visibility, [checkboxes], [area_basic_fn, area_crazy_fn] )
# 整理反复出现的控件句柄组合
input_combo = [txt, top_p, temperature, chatbot, history, system_prompt]
input_combo = [txt, top_p, api_key, temperature, chatbot, history, system_prompt]
output_combo = [chatbot, history, status]
predict_args = dict(fn=predict, inputs=input_combo, outputs=output_combo)
empty_txt_args = dict(fn=lambda: "", inputs=[], outputs=[txt]) # 用于在提交后清空输入栏
@ -142,4 +147,4 @@ def auto_opentab_delay():
auto_opentab_delay()
demo.title = "ChatGPT 学术优化"
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(server_name="0.0.0.0", share=True, server_port=PORT, auth=AUTHENTICATION)
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(server_name="0.0.0.0", share=False)

View File

@ -132,7 +132,7 @@ def get_name(_url_):
@CatchException
def 下载arxiv论文并翻译摘要(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 下载arxiv论文并翻译摘要(txt, top_p, api_key, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
CRAZY_FUNCTION_INFO = "下载arxiv论文并翻译摘要函数插件作者[binary-husky]。正在提取摘要并下载PDF文档……"
import glob
@ -172,7 +172,7 @@ def 下载arxiv论文并翻译摘要(txt, top_p, temperature, chatbot, history,
yield chatbot, history, '正常'
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, api_key, temperature, history=[]) # 带超时倒计时
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
yield chatbot, history, msg

View File

@ -5,7 +5,7 @@ from toolbox import CatchException, write_results_to_file
@CatchException
def 全项目切换英文(txt, top_p, temperature, chatbot, history, sys_prompt, WEB_PORT):
def 全项目切换英文(txt, top_p, api_key, temperature, chatbot, history, sys_prompt, WEB_PORT):
history = [] # 清空历史,以免输入溢出
# 集合文件
import time, glob, os
@ -32,7 +32,7 @@ def 全项目切换英文(txt, top_p, temperature, chatbot, history, sys_prompt,
file_content = f.read()
i_say = f'接下来请将以下代码中包含的所有中文转化为英文,只输出代码,文件名是{fp},文件代码是 ```{file_content}```'
# ** gpt request **
gpt_say = predict_no_ui_long_connection(inputs=i_say, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt)
gpt_say = predict_no_ui_long_connection(inputs=i_say, top_p=top_p, api_key=api_key, temperature=temperature, history=history, sys_prompt=sys_prompt)
mutable_return[index] = gpt_say
# 所有线程同时开始执行任务函数

View File

@ -3,7 +3,7 @@ from toolbox import CatchException, report_execption, write_results_to_file, pre
fast_debug = False
def 解析docx(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
def 解析docx(file_manifest, project_folder, top_p, api_key, temperature, chatbot, history, systemPromptTxt):
import time, os
# pip install python-docx 用于docx格式跨平台
# pip install pywin32 用于doc格式仅支持Win平台
@ -40,7 +40,7 @@ def 解析docx(file_manifest, project_folder, top_p, temperature, chatbot, histo
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature,
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, api_key, temperature,
history=[]) # 带超时倒计时
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user);
@ -66,7 +66,7 @@ def 解析docx(file_manifest, project_folder, top_p, temperature, chatbot, histo
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature,
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, api_key, temperature,
history=history) # 带超时倒计时
chatbot[-1] = (i_say, gpt_say)
@ -79,7 +79,7 @@ def 解析docx(file_manifest, project_folder, top_p, temperature, chatbot, histo
@CatchException
def 总结word文档(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 总结word文档(txt, top_p, api_key, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
import glob, os
# 基本信息:功能、贡献者
@ -124,4 +124,4 @@ def 总结word文档(txt, top_p, temperature, chatbot, history, systemPromptTxt,
return
# 开始正式执行任务
yield from 解析docx(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析docx(file_manifest, project_folder, top_p, api_key, temperature, chatbot, history, systemPromptTxt)

View File

@ -57,7 +57,7 @@ def clean_text(raw_text):
return final_text.strip()
def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
def 解析PDF(file_manifest, project_folder, top_p, api_key, temperature, chatbot, history, systemPromptTxt):
import time, glob, os, fitz
print('begin analysis on:', file_manifest)
for index, fp in enumerate(file_manifest):
@ -78,7 +78,7 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, api_key, temperature, history=[]) # 带超时倒计时
print('[2] end gpt req')
chatbot[-1] = (i_say_show_user, gpt_say)
@ -96,7 +96,7 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature, history=history) # 带超时倒计时
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, api_key, temperature, history=history) # 带超时倒计时
chatbot[-1] = (i_say, gpt_say)
history.append(i_say); history.append(gpt_say)
@ -107,7 +107,7 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor
@CatchException
def 批量总结PDF文档(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 批量总结PDF文档(txt, top_p, api_key, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
import glob, os
# 基本信息:功能、贡献者
@ -151,4 +151,4 @@ def 批量总结PDF文档(txt, top_p, temperature, chatbot, history, systemPromp
return
# 开始正式执行任务
yield from 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析PDF(file_manifest, project_folder, top_p, api_key, temperature, chatbot, history, systemPromptTxt)

View File

@ -61,7 +61,7 @@ def readPdf(pdfPath):
return outTextList
def 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
def 解析Paper(file_manifest, project_folder, top_p, api_key, temperature, chatbot, history, systemPromptTxt):
import time, glob, os
from bs4 import BeautifulSoup
print('begin analysis on:', file_manifest)
@ -83,7 +83,7 @@ def 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, hist
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, api_key, temperature, history=[]) # 带超时倒计时
print('[2] end gpt req')
chatbot[-1] = (i_say_show_user, gpt_say)
@ -101,7 +101,7 @@ def 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, hist
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature, history=history) # 带超时倒计时
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, api_key, temperature, history=history) # 带超时倒计时
chatbot[-1] = (i_say, gpt_say)
history.append(i_say); history.append(gpt_say)
@ -113,7 +113,7 @@ def 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, hist
@CatchException
def 批量总结PDF文档pdfminer(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 批量总结PDF文档pdfminer(txt, top_p, api_key, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
history = [] # 清空历史,以免输入溢出
import glob, os
@ -147,5 +147,5 @@ def 批量总结PDF文档pdfminer(txt, top_p, temperature, chatbot, history, sys
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex或pdf文件: {txt}")
yield chatbot, history, '正常'
return
yield from 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析Paper(file_manifest, project_folder, top_p, api_key, temperature, chatbot, history, systemPromptTxt)

View File

@ -3,7 +3,7 @@ from toolbox import CatchException, report_execption, write_results_to_file, pre
fast_debug = False
def 生成函数注释(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
def 生成函数注释(file_manifest, project_folder, top_p, api_key, temperature, chatbot, history, systemPromptTxt):
import time, glob, os
print('begin analysis on:', file_manifest)
for index, fp in enumerate(file_manifest):
@ -19,7 +19,7 @@ def 生成函数注释(file_manifest, project_folder, top_p, temperature, chatbo
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, api_key, temperature, history=[]) # 带超时倒计时
print('[2] end gpt req')
chatbot[-1] = (i_say_show_user, gpt_say)
@ -37,7 +37,7 @@ def 生成函数注释(file_manifest, project_folder, top_p, temperature, chatbo
@CatchException
def 批量生成函数注释(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 批量生成函数注释(txt, top_p, api_key, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@ -54,4 +54,4 @@ def 批量生成函数注释(txt, top_p, temperature, chatbot, history, systemPr
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield chatbot, history, '正常'
return
yield from 生成函数注释(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 生成函数注释(file_manifest, project_folder, top_p, api_key, temperature, chatbot, history, systemPromptTxt)

View File

@ -2,7 +2,7 @@ from predict import predict_no_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
fast_debug = False
def 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
def 解析源代码(file_manifest, project_folder, top_p, api_key, temperature, chatbot, history, systemPromptTxt):
import time, glob, os
print('begin analysis on:', file_manifest)
for index, fp in enumerate(file_manifest):
@ -19,7 +19,7 @@ def 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot,
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, api_key, temperature, history=[]) # 带超时倒计时
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
@ -34,7 +34,7 @@ def 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot,
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature, history=history) # 带超时倒计时
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, api_key, temperature, history=history) # 带超时倒计时
chatbot[-1] = (i_say, gpt_say)
history.append(i_say); history.append(gpt_say)
@ -47,7 +47,7 @@ def 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot,
@CatchException
def 解析项目本身(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 解析项目本身(txt, top_p, api_key, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
history = [] # 清空历史,以免输入溢出
import time, glob, os
file_manifest = [f for f in glob.glob('./*.py') if ('test_project' not in f) and ('gpt_log' not in f)] + \
@ -65,8 +65,8 @@ def 解析项目本身(txt, top_p, temperature, chatbot, history, systemPromptTx
if not fast_debug:
# ** gpt request **
# gpt_say = predict_no_ui(inputs=i_say, top_p=top_p, temperature=temperature)
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[], long_connection=True) # 带超时倒计时
# gpt_say = predict_no_ui(inputs=i_say, top_p=top_p, api_key=api_key, temperature=temperature)
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, api_key, temperature, history=[], long_connection=True) # 带超时倒计时
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
@ -79,8 +79,8 @@ def 解析项目本身(txt, top_p, temperature, chatbot, history, systemPromptTx
if not fast_debug:
# ** gpt request **
# gpt_say = predict_no_ui(inputs=i_say, top_p=top_p, temperature=temperature, history=history)
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature, history=history, long_connection=True) # 带超时倒计时
# gpt_say = predict_no_ui(inputs=i_say, top_p=top_p, api_key=api_key, temperature=temperature, history=history)
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, api_key, temperature, history=history, long_connection=True) # 带超时倒计时
chatbot[-1] = (i_say, gpt_say)
history.append(i_say); history.append(gpt_say)
@ -90,7 +90,7 @@ def 解析项目本身(txt, top_p, temperature, chatbot, history, systemPromptTx
yield chatbot, history, '正常'
@CatchException
def 解析一个Python项目(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 解析一个Python项目(txt, top_p, api_key, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@ -105,11 +105,11 @@ def 解析一个Python项目(txt, top_p, temperature, chatbot, history, systemPr
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何python文件: {txt}")
yield chatbot, history, '正常'
return
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析源代码(file_manifest, project_folder, top_p, api_key, temperature, chatbot, history, systemPromptTxt)
@CatchException
def 解析一个C项目的头文件(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 解析一个C项目的头文件(txt, top_p, api_key, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@ -126,10 +126,10 @@ def 解析一个C项目的头文件(txt, top_p, temperature, chatbot, history, s
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.h头文件: {txt}")
yield chatbot, history, '正常'
return
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析源代码(file_manifest, project_folder, top_p, api_key, temperature, chatbot, history, systemPromptTxt)
@CatchException
def 解析一个C项目(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 解析一个C项目(txt, top_p, api_key, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@ -146,11 +146,11 @@ def 解析一个C项目(txt, top_p, temperature, chatbot, history, systemPromptT
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.h头文件: {txt}")
yield chatbot, history, '正常'
return
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析源代码(file_manifest, project_folder, top_p, api_key, temperature, chatbot, history, systemPromptTxt)
@CatchException
def 解析一个Java项目(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 解析一个Java项目(txt, top_p, api_key, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@ -168,11 +168,11 @@ def 解析一个Java项目(txt, top_p, temperature, chatbot, history, systemProm
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何java文件: {txt}")
yield chatbot, history, '正常'
return
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析源代码(file_manifest, project_folder, top_p, api_key, temperature, chatbot, history, systemPromptTxt)
@CatchException
def 解析一个Rect项目(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 解析一个Rect项目(txt, top_p, api_key, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@ -191,11 +191,11 @@ def 解析一个Rect项目(txt, top_p, temperature, chatbot, history, systemProm
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何Rect文件: {txt}")
yield chatbot, history, '正常'
return
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析源代码(file_manifest, project_folder, top_p, api_key, temperature, chatbot, history, systemPromptTxt)
@CatchException
def 解析一个Golang项目(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 解析一个Golang项目(txt, top_p, api_key, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@ -210,4 +210,4 @@ def 解析一个Golang项目(txt, top_p, temperature, chatbot, history, systemPr
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何golang文件: {txt}")
yield chatbot, history, '正常'
return
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析源代码(file_manifest, project_folder, top_p, api_key, temperature, chatbot, history, systemPromptTxt)

View File

@ -3,7 +3,7 @@ from toolbox import CatchException, report_execption, write_results_to_file, pre
fast_debug = False
def 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
def 解析Paper(file_manifest, project_folder, top_p, api_key, temperature, chatbot, history, systemPromptTxt):
import time, glob, os
print('begin analysis on:', file_manifest)
for index, fp in enumerate(file_manifest):
@ -20,7 +20,7 @@ def 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, hist
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, api_key, temperature, history=[]) # 带超时倒计时
print('[2] end gpt req')
chatbot[-1] = (i_say_show_user, gpt_say)
@ -38,7 +38,7 @@ def 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, hist
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature, history=history) # 带超时倒计时
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, api_key, temperature, history=history) # 带超时倒计时
chatbot[-1] = (i_say, gpt_say)
history.append(i_say); history.append(gpt_say)
@ -50,7 +50,7 @@ def 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, hist
@CatchException
def 读文章写摘要(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 读文章写摘要(txt, top_p, api_key, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@ -67,4 +67,4 @@ def 读文章写摘要(txt, top_p, temperature, chatbot, history, systemPromptTx
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield chatbot, history, '正常'
return
yield from 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析Paper(file_manifest, project_folder, top_p, api_key, temperature, chatbot, history, systemPromptTxt)

View File

@ -3,7 +3,7 @@ from toolbox import CatchException, report_execption, write_results_to_file
import datetime
@CatchException
def 高阶功能模板函数(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 高阶功能模板函数(txt, top_p, api_key, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
history = [] # 清空历史,以免输入溢出
chatbot.append(("这是什么功能?", "[Local Message] 请注意,您正在调用一个[函数插件]的模板该函数面向希望实现更多有趣功能的开发者它可以作为创建新功能函数的模板。为了做到简单易读该函数只有25行代码所以不会实时反馈文字流或心跳请耐心等待程序输出完成。此外我们也提供可同步处理大量文件的多线程Demo供您参考。您若希望分享新的功能模组请不吝PR"))
yield chatbot, history, '正常' # 由于请求gpt需要一段时间我们先及时地做一次状态显示
@ -17,7 +17,7 @@ def 高阶功能模板函数(txt, top_p, temperature, chatbot, history, systemPr
# history = [] 每次询问不携带之前的询问历史
gpt_say = predict_no_ui_long_connection(
inputs=i_say, top_p=top_p, temperature=temperature, history=[],
inputs=i_say, top_p=top_p, api_key=api_key, temperature=temperature, history=[],
sys_prompt="当你想发送一张照片时请使用Markdown, 并且不要有反斜线, 不要用代码块。使用 Unsplash API (https://source.unsplash.com/1280x720/? < PUT_YOUR_QUERY_HERE >)。") # 请求gpt需要一段时间
chatbot[-1] = (i_say, gpt_say)

View File

@ -1,248 +0,0 @@
# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目
"""
该文件中主要包含三个函数
不具备多线程能力的函数
1. predict: 正常对话时使用具备完备的交互功能不可多线程
具备多线程调用能力的函数
2. predict_no_ui高级实验性功能模块调用不会实时显示在界面上参数简单可以多线程并行方便实现复杂的功能逻辑
3. predict_no_ui_long_connection在实验过程中发现调用predict_no_ui处理长文档时和openai的连接容易断掉这个函数用stream的方式解决这个问题同样支持多线程
"""
import json
import gradio as gr
import logging
import traceback
import requests
import importlib
# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件不受git管控如果有则覆盖原config文件
from toolbox import get_conf
proxies, API_URL, API_KEY, TIMEOUT_SECONDS, MAX_RETRY, LLM_MODEL = \
get_conf('proxies', 'API_URL', 'API_KEY', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'LLM_MODEL')
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
def get_full_error(chunk, stream_response):
"""
获取完整的从Openai返回的报错
"""
while True:
try:
chunk += next(stream_response)
except:
break
return chunk
def predict_no_ui(inputs, top_p, temperature, history=[], sys_prompt=""):
"""
发送至chatGPT等待回复一次性完成不显示中间过程
predict函数的简化版
用于payload比较大的情况或者用于实现多线带嵌套的复杂功能
inputs 是本次问询的输入
top_p, temperature是chatGPT的内部调优参数
history 是之前的对话列表
注意无论是inputs还是history内容太长了都会触发token数量溢出的错误然后raise ConnectionAbortedError
"""
headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt=sys_prompt, stream=False)
retry = 0
while True:
try:
# make a POST request to the API endpoint, stream=False
response = requests.post(API_URL, headers=headers, proxies=proxies,
json=payload, stream=False, timeout=TIMEOUT_SECONDS*2); break
except requests.exceptions.ReadTimeout as e:
retry += 1
traceback.print_exc()
if retry > MAX_RETRY: raise TimeoutError
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
try:
result = json.loads(response.text)["choices"][0]["message"]["content"]
return result
except Exception as e:
if "choices" not in response.text: print(response.text)
raise ConnectionAbortedError("Json解析不合常规可能是文本过长" + response.text)
def predict_no_ui_long_connection(inputs, top_p, temperature, history=[], sys_prompt=""):
"""
发送至chatGPT等待回复一次性完成不显示中间过程但内部用stream的方法避免有人中途掐网线
"""
headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt=sys_prompt, stream=True)
retry = 0
while True:
try:
# make a POST request to the API endpoint, stream=False
response = requests.post(API_URL, headers=headers, proxies=proxies,
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
except requests.exceptions.ReadTimeout as e:
retry += 1
traceback.print_exc()
if retry > MAX_RETRY: raise TimeoutError
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
stream_response = response.iter_lines()
result = ''
while True:
try: chunk = next(stream_response).decode()
except StopIteration: break
if len(chunk)==0: continue
if not chunk.startswith('data:'):
error_msg = get_full_error(chunk.encode('utf8'), stream_response).decode()
if "reduce the length" in error_msg:
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
else:
raise RuntimeError("OpenAI拒绝了请求" + error_msg)
json_data = json.loads(chunk.lstrip('data:'))['choices'][0]
delta = json_data["delta"]
if len(delta) == 0: break
if "role" in delta: continue
if "content" in delta: result += delta["content"]; print(delta["content"], end='')
else: raise RuntimeError("意外Json结构"+delta)
if json_data['finish_reason'] == 'length':
raise ConnectionAbortedError("正常结束但显示Token不足。")
return result
def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt='',
stream = True, additional_fn=None):
"""
发送至chatGPT流式获取输出
用于基础的对话功能
inputs 是本次问询的输入
top_p, temperature是chatGPT的内部调优参数
history 是之前的对话列表注意无论是inputs还是history内容太长了都会触发token数量溢出的错误
chatbot 为WebUI中显示的对话列表修改它然后yeild出去可以直接修改对话界面内容
additional_fn代表点击的哪个按钮按钮见functional.py
"""
if additional_fn is not None:
import functional
importlib.reload(functional) # 热更新prompt
functional = functional.get_functionals()
if "PreProcess" in functional[additional_fn]: inputs = functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = functional[additional_fn]["Prefix"] + inputs + functional[additional_fn]["Suffix"]
if stream:
raw_input = inputs
logging.info(f'[raw_input] {raw_input}')
chatbot.append((inputs, ""))
yield chatbot, history, "等待响应"
headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt, stream)
history.append(inputs); history.append(" ")
retry = 0
while True:
try:
# make a POST request to the API endpoint, stream=True
response = requests.post(API_URL, headers=headers, proxies=proxies,
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
except:
retry += 1
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
yield chatbot, history, "请求超时"+retry_msg
if retry > MAX_RETRY: raise TimeoutError
gpt_replying_buffer = ""
is_head_of_the_stream = True
if stream:
stream_response = response.iter_lines()
while True:
chunk = next(stream_response)
# print(chunk.decode()[6:])
if is_head_of_the_stream:
# 数据流的第一帧不携带content
is_head_of_the_stream = False; continue
if chunk:
try:
if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
# 判定为数据流的结束gpt_replying_buffer也写完了
logging.info(f'[response] {gpt_replying_buffer}')
break
# 处理数据流的主体
chunkjson = json.loads(chunk.decode()[6:])
status_text = f"finish_reason: {chunkjson['choices'][0]['finish_reason']}"
# 如果这里抛出异常一般是文本过长详情见get_full_error的输出
gpt_replying_buffer = gpt_replying_buffer + json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"]
history[-1] = gpt_replying_buffer
chatbot[-1] = (history[-2], history[-1])
yield chatbot, history, status_text
except Exception as e:
traceback.print_exc()
yield chatbot, history, "Json解析不合常规"
chunk = get_full_error(chunk, stream_response)
error_msg = chunk.decode()
if "reduce the length" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Input (or history) is too long, please reduce input or clear history by refreshing this page.")
history = [] # 清除历史
elif "Incorrect API key" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key provided.")
elif "exceeded your current quota" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由拒绝服务.")
else:
from toolbox import regular_txt_to_markdown
tb_str = '```\n' + traceback.format_exc() + '```'
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk.decode()[4:])}")
yield chatbot, history, "Json异常" + error_msg
return
def generate_payload(inputs, top_p, temperature, history, system_prompt, stream):
"""
整合所有信息选择LLM模型生成http请求为发送请求做准备
"""
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {API_KEY}"
}
conversation_cnt = len(history) // 2
messages = [{"role": "system", "content": system_prompt}]
if conversation_cnt:
for index in range(0, 2*conversation_cnt, 2):
what_i_have_asked = {}
what_i_have_asked["role"] = "user"
what_i_have_asked["content"] = history[index]
what_gpt_answer = {}
what_gpt_answer["role"] = "assistant"
what_gpt_answer["content"] = history[index+1]
if what_i_have_asked["content"] != "":
if what_gpt_answer["content"] == "": continue
if what_gpt_answer["content"] == timeout_bot_msg: continue
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
else:
messages[-1]['content'] = what_gpt_answer['content']
what_i_ask_now = {}
what_i_ask_now["role"] = "user"
what_i_ask_now["content"] = inputs
messages.append(what_i_ask_now)
payload = {
"model": LLM_MODEL,
"messages": messages,
"temperature": temperature, # 1.0,
"top_p": top_p, # 1.0,
"n": 1,
"stream": stream,
"presence_penalty": 0,
"frequency_penalty": 0,
}
print(f" {LLM_MODEL} : {conversation_cnt} : {inputs}")
return headers,payload

View File

@ -90,12 +90,12 @@ async def run(context, max_token=512):
def predict_tgui(inputs, top_p, temperature, chatbot=[], history=[], system_prompt='', stream = True, additional_fn=None):
def predict_tgui(inputs, top_p, api_key, temperature, chatbot=[], history=[], system_prompt='', stream = True, additional_fn=None):
"""
发送至chatGPT流式获取输出
用于基础的对话功能
inputs 是本次问询的输入
top_p, temperature是chatGPT的内部调优参数
top_p, api_key, temperature是chatGPT的内部调优参数
history 是之前的对话列表注意无论是inputs还是history内容太长了都会触发token数量溢出的错误
chatbot 为WebUI中显示的对话列表修改它然后yeild出去可以直接修改对话界面内容
additional_fn代表点击的哪个按钮按钮见functional.py
@ -144,7 +144,7 @@ def predict_tgui(inputs, top_p, temperature, chatbot=[], history=[], system_prom
def predict_tgui_no_ui(inputs, top_p, temperature, history=[], sys_prompt=""):
def predict_tgui_no_ui(inputs, top_p, api_key, temperature, history=[], sys_prompt=""):
raw_input = "What I would like to say is the following: " + inputs
prompt = inputs
tgui_say = ""

View File

@ -131,11 +131,11 @@
这个程序文件中包含了几个函数,分别是:
1. `解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)`通过输入文件路径列表对程序文件进行逐文件分析根据分析结果做出整体功能和构架的概括并生成包括每个文件功能的markdown表格。
2. `解析项目本身(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT)`对当前文件夹下的所有Python文件及其子文件夹进行逐文件分析并生成markdown表格。
3. `解析一个Python项目(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT)`对指定路径下的所有Python文件及其子文件夹进行逐文件分析并生成markdown表格。
4. `解析一个C项目的头文件(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT)`对指定路径下的所有头文件进行逐文件分析并生成markdown表格。
5. `解析一个C项目(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT)`:对指定路径下的所有.h、.cpp、.c文件及其子文件夹进行逐文件分析并生成markdown表格。
1. `解析源代码(file_manifest, project_folder, top_p, api_key, temperature, chatbot, history, systemPromptTxt)`通过输入文件路径列表对程序文件进行逐文件分析根据分析结果做出整体功能和构架的概括并生成包括每个文件功能的markdown表格。
2. `解析项目本身(txt, top_p, api_key, temperature, chatbot, history, systemPromptTxt, WEB_PORT)`对当前文件夹下的所有Python文件及其子文件夹进行逐文件分析并生成markdown表格。
3. `解析一个Python项目(txt, top_p, api_key, temperature, chatbot, history, systemPromptTxt, WEB_PORT)`对指定路径下的所有Python文件及其子文件夹进行逐文件分析并生成markdown表格。
4. `解析一个C项目的头文件(txt, top_p, api_key, temperature, chatbot, history, systemPromptTxt, WEB_PORT)`对指定路径下的所有头文件进行逐文件分析并生成markdown表格。
5. `解析一个C项目(txt, top_p, api_key, temperature, chatbot, history, systemPromptTxt, WEB_PORT)`:对指定路径下的所有.h、.cpp、.c文件及其子文件夹进行逐文件分析并生成markdown表格。
程序中还包含了一些辅助函数和变量如CatchException装饰器函数report_execption函数、write_results_to_file函数等。在执行过程中还会调用其他模块中的函数如toolbox模块的函数和predict模块的函数。

View File

@ -16,13 +16,13 @@ def get_reduce_token_percent(text):
except:
return 0.5, '不详'
def predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[], sys_prompt='', long_connection=True):
def predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, api_key, temperature, history=[], sys_prompt='', long_connection=True):
"""
调用简单的predict_no_ui接口但是依然保留了些许界面心跳功能当对话太长时会自动采用二分法截断
i_say: 当前输入
i_say_show_user: 显示到对话界面上的当前输入例如输入整个文件时你绝对不想把文件的内容都糊到对话界面上
chatbot: 对话界面句柄
top_p, temperature: gpt参数
top_p, api_key, temperature: gpt参数
history: gpt参数 对话历史
sys_prompt: gpt参数 sys_prompt
long_connection: 是否采用更稳定的连接方式推荐
@ -39,9 +39,9 @@ def predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temp
while True:
try:
if long_connection:
mutable[0] = predict_no_ui_long_connection(inputs=i_say, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt)
mutable[0] = predict_no_ui_long_connection(inputs=i_say, top_p=top_p, api_key=api_key, temperature=temperature, history=history, sys_prompt=sys_prompt)
else:
mutable[0] = predict_no_ui(inputs=i_say, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt)
mutable[0] = predict_no_ui(inputs=i_say, top_p=top_p, api_key=api_key, temperature=temperature, history=history, sys_prompt=sys_prompt)
break
except ConnectionAbortedError as token_exceeded_error:
# 尝试计算比例,尽可能多地保留文本
@ -108,9 +108,9 @@ def CatchException(f):
装饰器函数捕捉函数f中的异常并封装到一个生成器中返回并显示到聊天当中
"""
@wraps(f)
def decorated(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def decorated(txt, top_p, api_key, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
try:
yield from f(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT)
yield from f(txt, top_p, api_key, temperature, chatbot, history, systemPromptTxt, WEB_PORT)
except Exception as e:
from check_proxy import check_proxy
from toolbox import get_conf
@ -313,14 +313,14 @@ def read_single_conf_with_lru_cache(arg):
try: r = getattr(importlib.import_module('config_private'), arg)
except: r = getattr(importlib.import_module('config'), arg)
# 在读取API_KEY时检查一下是不是忘了改config
if arg=='API_KEY':
# 正确的 API_KEY 是 "sk-" + 48 位大小写字母数字的组合
API_MATCH = re.match(r"sk-[a-zA-Z0-9]{48}$", r)
if API_MATCH:
print(f"[API_KEY] 您的 API_KEY 是: {r[:15]}*** API_KEY 导入成功")
else:
assert False, "正确的 API_KEY 是 'sk-' + '48 位大小写字母数字' 的组合请在config文件中修改API密钥, 添加海外代理之后再运行。" + \
"如果您刚更新过代码请确保旧版config_private文件中没有遗留任何新增键值"
# if arg=='API_KEY':
# # 正确的 API_KEY 是 "sk-" + 48 位大小写字母数字的组合
# API_MATCH = re.match(r"sk-[a-zA-Z0-9]{48}$", r)
# if API_MATCH:
# print(f"[API_KEY] 您的 API_KEY 是: {r[:15]}*** API_KEY 导入成功")
# else:
# assert False, "正确的 API_KEY 是 'sk-' + '48 位大小写字母数字' 的组合请在config文件中修改API密钥, 添加海外代理之后再运行。" + \
# "如果您刚更新过代码请确保旧版config_private文件中没有遗留任何新增键值"
if arg=='proxies':
if r is None:
print('[PROXY] 网络代理状态未配置。无代理状态下很可能无法访问。建议检查USE_PROXY选项是否修改。')