优化azure的体验
This commit is contained in:
parent
ced977c443
commit
1fe66f0291
@ -8,7 +8,7 @@
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
# [step 1]>> API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下,还需要填写组织(格式如org-123456789abcdefghijklmno的),请向下翻,找 API_ORG 设置项
|
# [step 1]>> API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下,还需要填写组织(格式如org-123456789abcdefghijklmno的),请向下翻,找 API_ORG 设置项
|
||||||
API_KEY = "sk-此处填API密钥" # 可同时填写多个API-KEY,用英文逗号分割,例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey1,fkxxxx-api2dkey2"
|
API_KEY = "此处填API密钥" # 可同时填写多个API-KEY,用英文逗号分割,例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey3,azure-apikey4"
|
||||||
|
|
||||||
|
|
||||||
# [step 2]>> 改为True应用代理,如果直接在海外服务器部署,此处不修改
|
# [step 2]>> 改为True应用代理,如果直接在海外服务器部署,此处不修改
|
||||||
@ -110,9 +110,8 @@ SLACK_CLAUDE_USER_TOKEN = ''
|
|||||||
|
|
||||||
# 如果需要使用AZURE 详情请见额外文档 docs\use_azure.md
|
# 如果需要使用AZURE 详情请见额外文档 docs\use_azure.md
|
||||||
AZURE_ENDPOINT = "https://你亲手写的api名称.openai.azure.com/"
|
AZURE_ENDPOINT = "https://你亲手写的api名称.openai.azure.com/"
|
||||||
AZURE_API_KEY = "填入azure openai api的密钥"
|
AZURE_API_KEY = "填入azure openai api的密钥" # 建议直接在API_KEY处填写,该选项即将被弃用
|
||||||
AZURE_API_VERSION = "2023-05-15" # 一般不修改
|
AZURE_ENGINE = "填入你亲手写的部署名" # 读 docs\use_azure.md
|
||||||
AZURE_ENGINE = "填入你亲手写的部署名" # 读 docs\use_azure.md
|
|
||||||
|
|
||||||
|
|
||||||
# 使用Newbing
|
# 使用Newbing
|
||||||
|
8
main.py
8
main.py
@ -4,10 +4,10 @@ def main():
|
|||||||
import gradio as gr
|
import gradio as gr
|
||||||
if gr.__version__ not in ['3.28.3','3.32.2']: assert False, "需要特殊依赖,请务必用 pip install -r requirements.txt 指令安装依赖,详情信息见requirements.txt"
|
if gr.__version__ not in ['3.28.3','3.32.2']: assert False, "需要特殊依赖,请务必用 pip install -r requirements.txt 指令安装依赖,详情信息见requirements.txt"
|
||||||
from request_llm.bridge_all import predict
|
from request_llm.bridge_all import predict
|
||||||
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, DummyWith
|
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, load_chat_cookies, DummyWith
|
||||||
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到
|
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到
|
||||||
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = \
|
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = \
|
||||||
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
|
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
|
||||||
|
|
||||||
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
||||||
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
||||||
@ -54,7 +54,7 @@ def main():
|
|||||||
cancel_handles = []
|
cancel_handles = []
|
||||||
with gr.Blocks(title="ChatGPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
|
with gr.Blocks(title="ChatGPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
|
||||||
gr.HTML(title_html)
|
gr.HTML(title_html)
|
||||||
cookies = gr.State({'api_key': API_KEY, 'llm_model': LLM_MODEL})
|
cookies = gr.State(load_chat_cookies())
|
||||||
with gr_L1():
|
with gr_L1():
|
||||||
with gr_L2(scale=2):
|
with gr_L2(scale=2):
|
||||||
chatbot = gr.Chatbot(label=f"当前模型:{LLM_MODEL}")
|
chatbot = gr.Chatbot(label=f"当前模型:{LLM_MODEL}")
|
||||||
|
@ -16,9 +16,6 @@ from toolbox import get_conf, trimmed_format_exc
|
|||||||
from .bridge_chatgpt import predict_no_ui_long_connection as chatgpt_noui
|
from .bridge_chatgpt import predict_no_ui_long_connection as chatgpt_noui
|
||||||
from .bridge_chatgpt import predict as chatgpt_ui
|
from .bridge_chatgpt import predict as chatgpt_ui
|
||||||
|
|
||||||
from .bridge_azure_test import predict_no_ui_long_connection as azure_noui
|
|
||||||
from .bridge_azure_test import predict as azure_ui
|
|
||||||
|
|
||||||
from .bridge_chatglm import predict_no_ui_long_connection as chatglm_noui
|
from .bridge_chatglm import predict_no_ui_long_connection as chatglm_noui
|
||||||
from .bridge_chatglm import predict as chatglm_ui
|
from .bridge_chatglm import predict as chatglm_ui
|
||||||
|
|
||||||
@ -48,10 +45,11 @@ class LazyloadTiktoken(object):
|
|||||||
return encoder.decode(*args, **kwargs)
|
return encoder.decode(*args, **kwargs)
|
||||||
|
|
||||||
# Endpoint 重定向
|
# Endpoint 重定向
|
||||||
API_URL_REDIRECT, = get_conf("API_URL_REDIRECT")
|
API_URL_REDIRECT, AZURE_ENDPOINT, AZURE_ENGINE = get_conf("API_URL_REDIRECT", "AZURE_ENDPOINT", "AZURE_ENGINE")
|
||||||
openai_endpoint = "https://api.openai.com/v1/chat/completions"
|
openai_endpoint = "https://api.openai.com/v1/chat/completions"
|
||||||
api2d_endpoint = "https://openai.api2d.net/v1/chat/completions"
|
api2d_endpoint = "https://openai.api2d.net/v1/chat/completions"
|
||||||
newbing_endpoint = "wss://sydney.bing.com/sydney/ChatHub"
|
newbing_endpoint = "wss://sydney.bing.com/sydney/ChatHub"
|
||||||
|
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
|
||||||
# 兼容旧版的配置
|
# 兼容旧版的配置
|
||||||
try:
|
try:
|
||||||
API_URL, = get_conf("API_URL")
|
API_URL, = get_conf("API_URL")
|
||||||
@ -122,9 +120,9 @@ model_info = {
|
|||||||
|
|
||||||
# azure openai
|
# azure openai
|
||||||
"azure-gpt-3.5":{
|
"azure-gpt-3.5":{
|
||||||
"fn_with_ui": azure_ui,
|
"fn_with_ui": chatgpt_ui,
|
||||||
"fn_without_ui": azure_noui,
|
"fn_without_ui": chatgpt_noui,
|
||||||
"endpoint": get_conf("AZURE_ENDPOINT"),
|
"endpoint": azure_endpoint,
|
||||||
"max_token": 4096,
|
"max_token": 4096,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
@ -1,237 +0,0 @@
|
|||||||
"""
|
|
||||||
该文件中主要包含三个函数
|
|
||||||
|
|
||||||
不具备多线程能力的函数:
|
|
||||||
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
|
|
||||||
|
|
||||||
具备多线程调用能力的函数
|
|
||||||
2. predict_no_ui:高级实验性功能模块调用,不会实时显示在界面上,参数简单,可以多线程并行,方便实现复杂的功能逻辑
|
|
||||||
3. predict_no_ui_long_connection:在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程
|
|
||||||
"""
|
|
||||||
|
|
||||||
import logging
|
|
||||||
import traceback
|
|
||||||
import importlib
|
|
||||||
import openai
|
|
||||||
import time
|
|
||||||
import requests
|
|
||||||
import json
|
|
||||||
|
|
||||||
# 读取config.py文件中关于AZURE OPENAI API的信息
|
|
||||||
from toolbox import get_conf, update_ui, clip_history, trimmed_format_exc
|
|
||||||
TIMEOUT_SECONDS, MAX_RETRY, AZURE_ENGINE, AZURE_ENDPOINT, AZURE_API_VERSION, AZURE_API_KEY = \
|
|
||||||
get_conf('TIMEOUT_SECONDS', 'MAX_RETRY',"AZURE_ENGINE","AZURE_ENDPOINT", "AZURE_API_VERSION", "AZURE_API_KEY")
|
|
||||||
|
|
||||||
|
|
||||||
def get_full_error(chunk, stream_response):
|
|
||||||
"""
|
|
||||||
获取完整的从Openai返回的报错
|
|
||||||
"""
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
chunk += next(stream_response)
|
|
||||||
except:
|
|
||||||
break
|
|
||||||
return chunk
|
|
||||||
|
|
||||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
|
||||||
"""
|
|
||||||
发送至azure openai api,流式获取输出。
|
|
||||||
用于基础的对话功能。
|
|
||||||
inputs 是本次问询的输入
|
|
||||||
top_p, temperature是chatGPT的内部调优参数
|
|
||||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
|
||||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
|
||||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
|
||||||
"""
|
|
||||||
|
|
||||||
if additional_fn is not None:
|
|
||||||
import core_functional
|
|
||||||
importlib.reload(core_functional) # 热更新prompt
|
|
||||||
core_functional = core_functional.get_core_functions()
|
|
||||||
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
|
|
||||||
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
|
|
||||||
|
|
||||||
raw_input = inputs
|
|
||||||
logging.info(f'[raw_input] {raw_input}')
|
|
||||||
chatbot.append((inputs, ""))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
|
||||||
|
|
||||||
payload = generate_azure_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
|
||||||
|
|
||||||
history.append(inputs); history.append("")
|
|
||||||
|
|
||||||
retry = 0
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
openai.api_type = "azure"
|
|
||||||
openai.api_version = AZURE_API_VERSION
|
|
||||||
openai.api_base = AZURE_ENDPOINT
|
|
||||||
openai.api_key = AZURE_API_KEY
|
|
||||||
response = openai.ChatCompletion.create(timeout=TIMEOUT_SECONDS, **payload);break
|
|
||||||
except openai.error.AuthenticationError:
|
|
||||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
|
||||||
chatbot[-1] = [chatbot[-1][0], tb_str]
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="openai返回错误") # 刷新界面
|
|
||||||
return
|
|
||||||
except:
|
|
||||||
retry += 1
|
|
||||||
traceback.print_exc()
|
|
||||||
if retry > MAX_RETRY: raise TimeoutError
|
|
||||||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
|
||||||
|
|
||||||
gpt_replying_buffer = ""
|
|
||||||
is_head_of_the_stream = True
|
|
||||||
if stream:
|
|
||||||
|
|
||||||
stream_response = response
|
|
||||||
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
chunk = next(stream_response)
|
|
||||||
|
|
||||||
except StopIteration:
|
|
||||||
from toolbox import regular_txt_to_markdown; tb_str = '```\n' + trimmed_format_exc() + '```'
|
|
||||||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 远程返回错误: \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk)}")
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="远程返回错误:" + chunk) # 刷新界面
|
|
||||||
return
|
|
||||||
|
|
||||||
if is_head_of_the_stream and (r'"object":"error"' not in chunk):
|
|
||||||
# 数据流的第一帧不携带content
|
|
||||||
is_head_of_the_stream = False; continue
|
|
||||||
|
|
||||||
if chunk:
|
|
||||||
#print(chunk)
|
|
||||||
try:
|
|
||||||
if "delta" in chunk["choices"][0]:
|
|
||||||
if chunk["choices"][0]["finish_reason"] == "stop":
|
|
||||||
logging.info(f'[response] {gpt_replying_buffer}')
|
|
||||||
break
|
|
||||||
status_text = f"finish_reason: {chunk['choices'][0]['finish_reason']}"
|
|
||||||
gpt_replying_buffer = gpt_replying_buffer + chunk["choices"][0]["delta"]["content"]
|
|
||||||
|
|
||||||
history[-1] = gpt_replying_buffer
|
|
||||||
chatbot[-1] = (history[-2], history[-1])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
traceback.print_exc()
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
|
|
||||||
chunk = get_full_error(chunk, stream_response)
|
|
||||||
|
|
||||||
error_msg = chunk
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
|
||||||
return
|
|
||||||
|
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
|
||||||
"""
|
|
||||||
发送至AZURE OPENAI API,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
|
||||||
inputs:
|
|
||||||
是本次问询的输入
|
|
||||||
sys_prompt:
|
|
||||||
系统静默prompt
|
|
||||||
llm_kwargs:
|
|
||||||
chatGPT的内部调优参数
|
|
||||||
history:
|
|
||||||
是之前的对话列表
|
|
||||||
observe_window = None:
|
|
||||||
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
|
||||||
"""
|
|
||||||
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
|
||||||
payload = generate_azure_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
|
|
||||||
retry = 0
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
openai.api_type = "azure"
|
|
||||||
openai.api_version = AZURE_API_VERSION
|
|
||||||
openai.api_base = AZURE_ENDPOINT
|
|
||||||
openai.api_key = AZURE_API_KEY
|
|
||||||
response = openai.ChatCompletion.create(timeout=TIMEOUT_SECONDS, **payload);break
|
|
||||||
except:
|
|
||||||
retry += 1
|
|
||||||
traceback.print_exc()
|
|
||||||
if retry > MAX_RETRY: raise TimeoutError
|
|
||||||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
|
||||||
|
|
||||||
stream_response = response
|
|
||||||
result = ''
|
|
||||||
while True:
|
|
||||||
try: chunk = next(stream_response)
|
|
||||||
except StopIteration:
|
|
||||||
break
|
|
||||||
except:
|
|
||||||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
|
||||||
if len(chunk)==0: continue
|
|
||||||
|
|
||||||
json_data = json.loads(str(chunk))['choices'][0]
|
|
||||||
delta = json_data["delta"]
|
|
||||||
if len(delta) == 0:
|
|
||||||
break
|
|
||||||
if "role" in delta:
|
|
||||||
continue
|
|
||||||
if "content" in delta:
|
|
||||||
result += delta["content"]
|
|
||||||
if not console_slience: print(delta["content"], end='')
|
|
||||||
if observe_window is not None:
|
|
||||||
# 观测窗,把已经获取的数据显示出去
|
|
||||||
if len(observe_window) >= 1: observe_window[0] += delta["content"]
|
|
||||||
# 看门狗,如果超过期限没有喂狗,则终止
|
|
||||||
if len(observe_window) >= 2000:
|
|
||||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
|
||||||
raise RuntimeError("用户取消了程序。")
|
|
||||||
else:
|
|
||||||
raise RuntimeError("意外Json结构:"+delta)
|
|
||||||
if json_data['finish_reason'] == 'content_filter':
|
|
||||||
raise RuntimeError("由于提问含不合规内容被Azure过滤。")
|
|
||||||
if json_data['finish_reason'] == 'length':
|
|
||||||
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
|
|
||||||
return result
|
|
||||||
|
|
||||||
|
|
||||||
def generate_azure_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
|
||||||
"""
|
|
||||||
整合所有信息,选择LLM模型,生成 azure openai api请求,为发送请求做准备
|
|
||||||
"""
|
|
||||||
|
|
||||||
conversation_cnt = len(history) // 2
|
|
||||||
|
|
||||||
messages = [{"role": "system", "content": system_prompt}]
|
|
||||||
if conversation_cnt:
|
|
||||||
for index in range(0, 2*conversation_cnt, 2):
|
|
||||||
what_i_have_asked = {}
|
|
||||||
what_i_have_asked["role"] = "user"
|
|
||||||
what_i_have_asked["content"] = history[index]
|
|
||||||
what_gpt_answer = {}
|
|
||||||
what_gpt_answer["role"] = "assistant"
|
|
||||||
what_gpt_answer["content"] = history[index+1]
|
|
||||||
if what_i_have_asked["content"] != "":
|
|
||||||
if what_gpt_answer["content"] == "": continue
|
|
||||||
messages.append(what_i_have_asked)
|
|
||||||
messages.append(what_gpt_answer)
|
|
||||||
else:
|
|
||||||
messages[-1]['content'] = what_gpt_answer['content']
|
|
||||||
|
|
||||||
what_i_ask_now = {}
|
|
||||||
what_i_ask_now["role"] = "user"
|
|
||||||
what_i_ask_now["content"] = inputs
|
|
||||||
messages.append(what_i_ask_now)
|
|
||||||
|
|
||||||
payload = {
|
|
||||||
"model": llm_kwargs['llm_model'],
|
|
||||||
"messages": messages,
|
|
||||||
"temperature": llm_kwargs['temperature'], # 1.0,
|
|
||||||
"top_p": llm_kwargs['top_p'], # 1.0,
|
|
||||||
"n": 1,
|
|
||||||
"stream": stream,
|
|
||||||
"presence_penalty": 0,
|
|
||||||
"frequency_penalty": 0,
|
|
||||||
"engine": AZURE_ENGINE
|
|
||||||
}
|
|
||||||
try:
|
|
||||||
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
|
|
||||||
except:
|
|
||||||
print('输入中可能存在乱码。')
|
|
||||||
return payload
|
|
||||||
|
|
||||||
|
|
@ -22,8 +22,8 @@ import importlib
|
|||||||
# config_private.py放自己的秘密如API和代理网址
|
# config_private.py放自己的秘密如API和代理网址
|
||||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||||
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc
|
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc
|
||||||
proxies, API_KEY, TIMEOUT_SECONDS, MAX_RETRY, API_ORG = \
|
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG = \
|
||||||
get_conf('proxies', 'API_KEY', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG')
|
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG')
|
||||||
|
|
||||||
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||||
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
||||||
@ -101,6 +101,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||||
raise RuntimeError("用户取消了程序。")
|
raise RuntimeError("用户取消了程序。")
|
||||||
else: raise RuntimeError("意外Json结构:"+delta)
|
else: raise RuntimeError("意外Json结构:"+delta)
|
||||||
|
if json_data['finish_reason'] == 'content_filter':
|
||||||
|
raise RuntimeError("由于提问含不合规内容被Azure过滤。")
|
||||||
if json_data['finish_reason'] == 'length':
|
if json_data['finish_reason'] == 'length':
|
||||||
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
|
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
|
||||||
return result
|
return result
|
||||||
@ -247,6 +249,7 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
|||||||
"Authorization": f"Bearer {api_key}"
|
"Authorization": f"Bearer {api_key}"
|
||||||
}
|
}
|
||||||
if API_ORG.startswith('org-'): headers.update({"OpenAI-Organization": API_ORG})
|
if API_ORG.startswith('org-'): headers.update({"OpenAI-Organization": API_ORG})
|
||||||
|
if llm_kwargs['llm_model'].startswith('azure-'): headers.update({"api-key": api_key})
|
||||||
|
|
||||||
conversation_cnt = len(history) // 2
|
conversation_cnt = len(history) // 2
|
||||||
|
|
||||||
|
34
toolbox.py
34
toolbox.py
@ -505,16 +505,24 @@ def on_report_generated(cookies, files, chatbot):
|
|||||||
chatbot.append(['报告如何远程获取?', f'报告已经添加到右侧“文件上传区”(可能处于折叠状态),请查收。{file_links}'])
|
chatbot.append(['报告如何远程获取?', f'报告已经添加到右侧“文件上传区”(可能处于折叠状态),请查收。{file_links}'])
|
||||||
return cookies, report_files, chatbot
|
return cookies, report_files, chatbot
|
||||||
|
|
||||||
|
def load_chat_cookies():
|
||||||
|
API_KEY, LLM_MODEL, AZURE_API_KEY = get_conf('API_KEY', 'LLM_MODEL', 'AZURE_API_KEY')
|
||||||
|
if is_any_api_key(AZURE_API_KEY):
|
||||||
|
if is_any_api_key(API_KEY): API_KEY = API_KEY + ',' + AZURE_API_KEY
|
||||||
|
else: API_KEY = AZURE_API_KEY
|
||||||
|
return {'api_key': API_KEY, 'llm_model': LLM_MODEL}
|
||||||
|
|
||||||
def is_openai_api_key(key):
|
def is_openai_api_key(key):
|
||||||
API_MATCH_ORIGINAL = re.match(r"sk-[a-zA-Z0-9]{48}$", key)
|
API_MATCH_ORIGINAL = re.match(r"sk-[a-zA-Z0-9]{48}$", key)
|
||||||
|
return bool(API_MATCH_ORIGINAL)
|
||||||
|
|
||||||
|
def is_azure_api_key(key):
|
||||||
API_MATCH_AZURE = re.match(r"[a-zA-Z0-9]{32}$", key)
|
API_MATCH_AZURE = re.match(r"[a-zA-Z0-9]{32}$", key)
|
||||||
return bool(API_MATCH_ORIGINAL) or bool(API_MATCH_AZURE)
|
return bool(API_MATCH_AZURE)
|
||||||
|
|
||||||
def is_api2d_key(key):
|
def is_api2d_key(key):
|
||||||
if key.startswith('fk') and len(key) == 41:
|
API_MATCH_API2D = re.match(r"fk[a-zA-Z0-9]{6}-[a-zA-Z0-9]{32}$", key)
|
||||||
return True
|
return bool(API_MATCH_API2D)
|
||||||
else:
|
|
||||||
return False
|
|
||||||
|
|
||||||
def is_any_api_key(key):
|
def is_any_api_key(key):
|
||||||
if ',' in key:
|
if ',' in key:
|
||||||
@ -523,10 +531,10 @@ def is_any_api_key(key):
|
|||||||
if is_any_api_key(k): return True
|
if is_any_api_key(k): return True
|
||||||
return False
|
return False
|
||||||
else:
|
else:
|
||||||
return is_openai_api_key(key) or is_api2d_key(key)
|
return is_openai_api_key(key) or is_api2d_key(key) or is_azure_api_key(key)
|
||||||
|
|
||||||
def what_keys(keys):
|
def what_keys(keys):
|
||||||
avail_key_list = {'OpenAI Key':0, "API2D Key":0}
|
avail_key_list = {'OpenAI Key':0, "Azure Key":0, "API2D Key":0}
|
||||||
key_list = keys.split(',')
|
key_list = keys.split(',')
|
||||||
|
|
||||||
for k in key_list:
|
for k in key_list:
|
||||||
@ -537,7 +545,11 @@ def what_keys(keys):
|
|||||||
if is_api2d_key(k):
|
if is_api2d_key(k):
|
||||||
avail_key_list['API2D Key'] += 1
|
avail_key_list['API2D Key'] += 1
|
||||||
|
|
||||||
return f"检测到: OpenAI Key {avail_key_list['OpenAI Key']} 个,API2D Key {avail_key_list['API2D Key']} 个"
|
for k in key_list:
|
||||||
|
if is_azure_api_key(k):
|
||||||
|
avail_key_list['Azure Key'] += 1
|
||||||
|
|
||||||
|
return f"检测到: OpenAI Key {avail_key_list['OpenAI Key']} 个, Azure Key {avail_key_list['Azure Key']} 个, API2D Key {avail_key_list['API2D Key']} 个"
|
||||||
|
|
||||||
def select_api_key(keys, llm_model):
|
def select_api_key(keys, llm_model):
|
||||||
import random
|
import random
|
||||||
@ -552,8 +564,12 @@ def select_api_key(keys, llm_model):
|
|||||||
for k in key_list:
|
for k in key_list:
|
||||||
if is_api2d_key(k): avail_key_list.append(k)
|
if is_api2d_key(k): avail_key_list.append(k)
|
||||||
|
|
||||||
|
if llm_model.startswith('azure-'):
|
||||||
|
for k in key_list:
|
||||||
|
if is_azure_api_key(k): avail_key_list.append(k)
|
||||||
|
|
||||||
if len(avail_key_list) == 0:
|
if len(avail_key_list) == 0:
|
||||||
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源。")
|
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源(右下角更换模型菜单中可切换openai,azure和api2d请求源)")
|
||||||
|
|
||||||
api_key = random.choice(avail_key_list) # 随机负载均衡
|
api_key = random.choice(avail_key_list) # 随机负载均衡
|
||||||
return api_key
|
return api_key
|
||||||
|
Loading…
x
Reference in New Issue
Block a user