合并重复的函数
This commit is contained in:
		
							parent
							
								
									471a369bb8
								
							
						
					
					
						commit
						278464bfb7
					
				@ -1,6 +1,14 @@
 | 
				
			|||||||
 | 
					from functools import lru_cache
 | 
				
			||||||
 | 
					from toolbox import gen_time_str
 | 
				
			||||||
 | 
					from toolbox import promote_file_to_downloadzone
 | 
				
			||||||
 | 
					from toolbox import write_history_to_file, promote_file_to_downloadzone
 | 
				
			||||||
 | 
					from colorful import *
 | 
				
			||||||
import requests
 | 
					import requests
 | 
				
			||||||
import random
 | 
					import random
 | 
				
			||||||
from functools import lru_cache
 | 
					import copy
 | 
				
			||||||
 | 
					import os
 | 
				
			||||||
 | 
					import math
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class GROBID_OFFLINE_EXCEPTION(Exception): pass
 | 
					class GROBID_OFFLINE_EXCEPTION(Exception): pass
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def get_avail_grobid_url():
 | 
					def get_avail_grobid_url():
 | 
				
			||||||
@ -28,3 +36,133 @@ def parse_pdf(pdf_path, grobid_url):
 | 
				
			|||||||
        raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
 | 
					        raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
 | 
				
			||||||
    return article_dict
 | 
					    return article_dict
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files):
 | 
				
			||||||
 | 
					    # -=-=-=-=-=-=-=-= 写出第1个文件:翻译前后混合 -=-=-=-=-=-=-=-=
 | 
				
			||||||
 | 
					    res_path = write_history_to_file(meta +  ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=f"{gen_time_str()}translated_and_original.md", file_fullname=None)
 | 
				
			||||||
 | 
					    promote_file_to_downloadzone(res_path, rename_file=os.path.basename(res_path)+'.md', chatbot=chatbot)
 | 
				
			||||||
 | 
					    generated_conclusion_files.append(res_path)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # -=-=-=-=-=-=-=-= 写出第2个文件:仅翻译后的文本 -=-=-=-=-=-=-=-=
 | 
				
			||||||
 | 
					    translated_res_array = []
 | 
				
			||||||
 | 
					    # 记录当前的大章节标题:
 | 
				
			||||||
 | 
					    last_section_name = ""
 | 
				
			||||||
 | 
					    for index, value in enumerate(gpt_response_collection):
 | 
				
			||||||
 | 
					        # 先挑选偶数序列号:
 | 
				
			||||||
 | 
					        if index % 2 != 0:
 | 
				
			||||||
 | 
					            # 先提取当前英文标题:
 | 
				
			||||||
 | 
					            cur_section_name = gpt_response_collection[index-1].split('\n')[0].split(" Part")[0]
 | 
				
			||||||
 | 
					            # 如果index是1的话,则直接使用first section name:
 | 
				
			||||||
 | 
					            if cur_section_name != last_section_name:
 | 
				
			||||||
 | 
					                cur_value = cur_section_name + '\n'
 | 
				
			||||||
 | 
					                last_section_name = copy.deepcopy(cur_section_name)
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                cur_value = ""
 | 
				
			||||||
 | 
					            # 再做一个小修改:重新修改当前part的标题,默认用英文的
 | 
				
			||||||
 | 
					            cur_value += value
 | 
				
			||||||
 | 
					            translated_res_array.append(cur_value)
 | 
				
			||||||
 | 
					    res_path = write_history_to_file(meta +  ["# Meta Translation" , paper_meta_info] + translated_res_array, 
 | 
				
			||||||
 | 
					                                     file_basename = f"{gen_time_str()}-translated_only.md", 
 | 
				
			||||||
 | 
					                                     file_fullname = None,
 | 
				
			||||||
 | 
					                                     auto_caption = False)
 | 
				
			||||||
 | 
					    promote_file_to_downloadzone(res_path, rename_file=os.path.basename(res_path)+'.md', chatbot=chatbot)
 | 
				
			||||||
 | 
					    generated_conclusion_files.append(res_path)
 | 
				
			||||||
 | 
					    return res_path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG):
 | 
				
			||||||
 | 
					    from crazy_functions.crazy_utils import construct_html
 | 
				
			||||||
 | 
					    from crazy_functions.crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
 | 
				
			||||||
 | 
					    from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
 | 
				
			||||||
 | 
					    from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    prompt = "以下是一篇学术论文的基本信息:\n"
 | 
				
			||||||
 | 
					    # title
 | 
				
			||||||
 | 
					    title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
 | 
				
			||||||
 | 
					    # authors
 | 
				
			||||||
 | 
					    authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n'
 | 
				
			||||||
 | 
					    # abstract
 | 
				
			||||||
 | 
					    abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
 | 
				
			||||||
 | 
					    # command
 | 
				
			||||||
 | 
					    prompt += f"请将题目和摘要翻译为{DST_LANG}。"
 | 
				
			||||||
 | 
					    meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 单线,获取文章meta信息
 | 
				
			||||||
 | 
					    paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
 | 
				
			||||||
 | 
					        inputs=prompt,
 | 
				
			||||||
 | 
					        inputs_show_user=prompt,
 | 
				
			||||||
 | 
					        llm_kwargs=llm_kwargs,
 | 
				
			||||||
 | 
					        chatbot=chatbot, history=[],
 | 
				
			||||||
 | 
					        sys_prompt="You are an academic paper reader。",
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 多线,翻译
 | 
				
			||||||
 | 
					    inputs_array = []
 | 
				
			||||||
 | 
					    inputs_show_user_array = []
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # get_token_num
 | 
				
			||||||
 | 
					    from request_llm.bridge_all import model_info
 | 
				
			||||||
 | 
					    enc = model_info[llm_kwargs['llm_model']]['tokenizer']
 | 
				
			||||||
 | 
					    def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def break_down(txt):
 | 
				
			||||||
 | 
					        raw_token_num = get_token_num(txt)
 | 
				
			||||||
 | 
					        if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT:
 | 
				
			||||||
 | 
					            return [txt]
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            # raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
 | 
				
			||||||
 | 
					            # find a smooth token limit to achieve even seperation
 | 
				
			||||||
 | 
					            count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
 | 
				
			||||||
 | 
					            token_limit_smooth = raw_token_num // count + count
 | 
				
			||||||
 | 
					            return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for section in article_dict.get('sections'):
 | 
				
			||||||
 | 
					        if len(section['text']) == 0: continue
 | 
				
			||||||
 | 
					        section_frags = break_down(section['text'])
 | 
				
			||||||
 | 
					        for i, fragment in enumerate(section_frags):
 | 
				
			||||||
 | 
					            heading = section['heading']
 | 
				
			||||||
 | 
					            if len(section_frags) > 1: heading += f' Part-{i+1}'
 | 
				
			||||||
 | 
					            inputs_array.append(
 | 
				
			||||||
 | 
					                f"你需要翻译{heading}章节,内容如下: \n\n{fragment}"
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					            inputs_show_user_array.append(
 | 
				
			||||||
 | 
					                f"# {heading}\n\n{fragment}"
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
 | 
				
			||||||
 | 
					        inputs_array=inputs_array,
 | 
				
			||||||
 | 
					        inputs_show_user_array=inputs_show_user_array,
 | 
				
			||||||
 | 
					        llm_kwargs=llm_kwargs,
 | 
				
			||||||
 | 
					        chatbot=chatbot,
 | 
				
			||||||
 | 
					        history_array=[meta for _ in inputs_array],
 | 
				
			||||||
 | 
					        sys_prompt_array=[
 | 
				
			||||||
 | 
					            "请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    # -=-=-=-=-=-=-=-= 写出Markdown文件 -=-=-=-=-=-=-=-=
 | 
				
			||||||
 | 
					    produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # -=-=-=-=-=-=-=-= 写出HTML文件 -=-=-=-=-=-=-=-=
 | 
				
			||||||
 | 
					    ch = construct_html() 
 | 
				
			||||||
 | 
					    orig = ""
 | 
				
			||||||
 | 
					    trans = ""
 | 
				
			||||||
 | 
					    gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
 | 
				
			||||||
 | 
					    for i,k in enumerate(gpt_response_collection_html): 
 | 
				
			||||||
 | 
					        if i%2==0:
 | 
				
			||||||
 | 
					            gpt_response_collection_html[i] = inputs_show_user_array[i//2]
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            # 先提取当前英文标题:
 | 
				
			||||||
 | 
					            cur_section_name = gpt_response_collection[i-1].split('\n')[0].split(" Part")[0]
 | 
				
			||||||
 | 
					            cur_value = cur_section_name + "\n" + gpt_response_collection_html[i]
 | 
				
			||||||
 | 
					            gpt_response_collection_html[i] = cur_value
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    final = ["", "", "一、论文概况",  "", "Abstract", paper_meta_info,  "二、论文翻译",  ""]
 | 
				
			||||||
 | 
					    final.extend(gpt_response_collection_html)
 | 
				
			||||||
 | 
					    for i, k in enumerate(final): 
 | 
				
			||||||
 | 
					        if i%2==0:
 | 
				
			||||||
 | 
					            orig = k
 | 
				
			||||||
 | 
					        if i%2==1:
 | 
				
			||||||
 | 
					            trans = k
 | 
				
			||||||
 | 
					            ch.add_row(a=orig, b=trans)
 | 
				
			||||||
 | 
					    create_report_file_name = f"{os.path.basename(fp)}.trans.html"
 | 
				
			||||||
 | 
					    html_file = ch.save_file(create_report_file_name)
 | 
				
			||||||
 | 
					    generated_conclusion_files.append(html_file)
 | 
				
			||||||
 | 
					    promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot)
 | 
				
			||||||
 | 
				
			|||||||
@ -1,11 +1,12 @@
 | 
				
			|||||||
from toolbox import CatchException, report_execption, gen_time_str
 | 
					from toolbox import CatchException, report_execption, get_log_folder, gen_time_str
 | 
				
			||||||
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
 | 
					from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
 | 
				
			||||||
from toolbox import write_history_to_file, get_log_folder
 | 
					from toolbox import write_history_to_file, promote_file_to_downloadzone
 | 
				
			||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
 | 
					from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
 | 
				
			||||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
 | 
					from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
 | 
				
			||||||
from .crazy_utils import read_and_clean_pdf_text
 | 
					from .crazy_utils import read_and_clean_pdf_text
 | 
				
			||||||
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url
 | 
					from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf
 | 
				
			||||||
from colorful import *
 | 
					from colorful import *
 | 
				
			||||||
 | 
					import copy
 | 
				
			||||||
import os
 | 
					import os
 | 
				
			||||||
import math
 | 
					import math
 | 
				
			||||||
import logging
 | 
					import logging
 | 
				
			||||||
@ -47,7 +48,7 @@ def markdown_to_dict(article_content):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@CatchException
 | 
					@CatchException
 | 
				
			||||||
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port, only_chinese=True):
 | 
					def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    disable_auto_promotion(chatbot)
 | 
					    disable_auto_promotion(chatbot)
 | 
				
			||||||
    # 基本信息:功能、贡献者
 | 
					    # 基本信息:功能、贡献者
 | 
				
			||||||
@ -84,15 +85,15 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
 | 
				
			|||||||
        return
 | 
					        return
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # 开始正式执行任务
 | 
					    # 开始正式执行任务
 | 
				
			||||||
    yield from 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, only_chinese)
 | 
					    yield from 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, only_chinese=True):
 | 
					def 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
 | 
				
			||||||
    import copy
 | 
					    import copy
 | 
				
			||||||
    import tiktoken
 | 
					    import tiktoken
 | 
				
			||||||
    TOKEN_LIMIT_PER_FRAGMENT = 1280
 | 
					    TOKEN_LIMIT_PER_FRAGMENT = 512
 | 
				
			||||||
    generated_conclusion_files = []
 | 
					    generated_conclusion_files = []
 | 
				
			||||||
    generated_html_files = []
 | 
					    generated_html_files = []
 | 
				
			||||||
    DST_LANG = "中文"
 | 
					    DST_LANG = "中文"
 | 
				
			||||||
@ -106,129 +107,7 @@ def 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwa
 | 
				
			|||||||
            article_content = f.readlines()
 | 
					            article_content = f.readlines()
 | 
				
			||||||
        article_dict = markdown_to_dict(article_content)
 | 
					        article_dict = markdown_to_dict(article_content)
 | 
				
			||||||
        logging.info(article_dict)
 | 
					        logging.info(article_dict)
 | 
				
			||||||
 | 
					        yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG)
 | 
				
			||||||
        prompt = "以下是一篇学术论文的基本信息:\n"
 | 
					 | 
				
			||||||
        # title
 | 
					 | 
				
			||||||
        title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
 | 
					 | 
				
			||||||
        # authors
 | 
					 | 
				
			||||||
        authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n'
 | 
					 | 
				
			||||||
        # abstract
 | 
					 | 
				
			||||||
        abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
 | 
					 | 
				
			||||||
        # command
 | 
					 | 
				
			||||||
        prompt += f"请将题目和摘要翻译为{DST_LANG}。"
 | 
					 | 
				
			||||||
        meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # 单线,获取文章meta信息
 | 
					 | 
				
			||||||
        paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
 | 
					 | 
				
			||||||
            inputs=prompt,
 | 
					 | 
				
			||||||
            inputs_show_user=prompt,
 | 
					 | 
				
			||||||
            llm_kwargs=llm_kwargs,
 | 
					 | 
				
			||||||
            chatbot=chatbot, history=[],
 | 
					 | 
				
			||||||
            sys_prompt="You are an academic paper reader。",
 | 
					 | 
				
			||||||
        )
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # 多线,翻译
 | 
					 | 
				
			||||||
        inputs_array = []
 | 
					 | 
				
			||||||
        inputs_show_user_array = []
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # get_token_num
 | 
					 | 
				
			||||||
        from request_llm.bridge_all import model_info
 | 
					 | 
				
			||||||
        enc = model_info[llm_kwargs['llm_model']]['tokenizer']
 | 
					 | 
				
			||||||
        def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
 | 
					 | 
				
			||||||
        from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        def break_down(txt):
 | 
					 | 
				
			||||||
            raw_token_num = get_token_num(txt)
 | 
					 | 
				
			||||||
            if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT:
 | 
					 | 
				
			||||||
                return [txt]
 | 
					 | 
				
			||||||
            else:
 | 
					 | 
				
			||||||
                # raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
 | 
					 | 
				
			||||||
                # find a smooth token limit to achieve even seperation
 | 
					 | 
				
			||||||
                count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
 | 
					 | 
				
			||||||
                token_limit_smooth = raw_token_num // count + count
 | 
					 | 
				
			||||||
                return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        for section in article_dict.get('sections'):
 | 
					 | 
				
			||||||
            if len(section['text']) == 0: continue
 | 
					 | 
				
			||||||
            section_frags = break_down(section['text'])
 | 
					 | 
				
			||||||
            for i, fragment in enumerate(section_frags):
 | 
					 | 
				
			||||||
                heading = section['heading']
 | 
					 | 
				
			||||||
                if len(section_frags) > 1: heading += f' Part-{i+1}'
 | 
					 | 
				
			||||||
                inputs_array.append(
 | 
					 | 
				
			||||||
                    f"你需要翻译{heading}章节,内容如下: \n\n{fragment}"
 | 
					 | 
				
			||||||
                )
 | 
					 | 
				
			||||||
                inputs_show_user_array.append(
 | 
					 | 
				
			||||||
                    f"# {heading}\n\n{fragment}"
 | 
					 | 
				
			||||||
                )
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
 | 
					 | 
				
			||||||
            inputs_array=inputs_array,
 | 
					 | 
				
			||||||
            inputs_show_user_array=inputs_show_user_array,
 | 
					 | 
				
			||||||
            llm_kwargs=llm_kwargs,
 | 
					 | 
				
			||||||
            chatbot=chatbot,
 | 
					 | 
				
			||||||
            history_array=[meta for _ in inputs_array],
 | 
					 | 
				
			||||||
            sys_prompt_array=[
 | 
					 | 
				
			||||||
                "请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
 | 
					 | 
				
			||||||
        )
 | 
					 | 
				
			||||||
        if only_chinese:
 | 
					 | 
				
			||||||
            # 直接提取出翻译的内容,然后保存下去:
 | 
					 | 
				
			||||||
            chinese_list = []
 | 
					 | 
				
			||||||
            # 记录当前的大章节标题:
 | 
					 | 
				
			||||||
            last_section_name = ""
 | 
					 | 
				
			||||||
            for index, value in enumerate(gpt_response_collection):
 | 
					 | 
				
			||||||
                # 先挑选偶数序列号:
 | 
					 | 
				
			||||||
                if index % 2 != 0:
 | 
					 | 
				
			||||||
                    # 先提取当前英文标题:
 | 
					 | 
				
			||||||
                    cur_section_name = gpt_response_collection[index-1].split('\n')[0].split(" Part")[0]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
                    # 如果index是1的话,则直接使用first section name:
 | 
					 | 
				
			||||||
                    if cur_section_name != last_section_name:
 | 
					 | 
				
			||||||
                        cur_value = cur_section_name + '\n'
 | 
					 | 
				
			||||||
                        last_section_name = copy.deepcopy(cur_section_name)
 | 
					 | 
				
			||||||
                    else:
 | 
					 | 
				
			||||||
                        cur_value = ""
 | 
					 | 
				
			||||||
                    # 再判断翻译是否错误,如果错误,则直接贴原来的英文:
 | 
					 | 
				
			||||||
                    if "The OpenAI account associated" in value:
 | 
					 | 
				
			||||||
                        cur_value += gpt_response_collection[index-1]
 | 
					 | 
				
			||||||
                    else:
 | 
					 | 
				
			||||||
                        # 再做一个小修改:重新修改当前part的标题,默认用英文的
 | 
					 | 
				
			||||||
                        cur_value += value
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
                    chinese_list.append(cur_value)
 | 
					 | 
				
			||||||
            res_path = write_history_to_file(meta +  ["# Meta Translation" , paper_meta_info] + chinese_list, file_basename=None, file_fullname=None)
 | 
					 | 
				
			||||||
            promote_file_to_downloadzone(res_path, rename_file=os.path.basename(fp)+'.md', chatbot=chatbot)
 | 
					 | 
				
			||||||
            generated_conclusion_files.append(res_path)
 | 
					 | 
				
			||||||
        else:
 | 
					 | 
				
			||||||
            res_path = write_history_to_file(meta +  ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=None, file_fullname=None)
 | 
					 | 
				
			||||||
            promote_file_to_downloadzone(res_path, rename_file=os.path.basename(fp)+'.md', chatbot=chatbot)
 | 
					 | 
				
			||||||
            generated_conclusion_files.append(res_path)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        ch = construct_html() 
 | 
					 | 
				
			||||||
        orig = ""
 | 
					 | 
				
			||||||
        trans = ""
 | 
					 | 
				
			||||||
        gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
 | 
					 | 
				
			||||||
        # 叠加HTML文件
 | 
					 | 
				
			||||||
        for i,k in enumerate(gpt_response_collection_html): 
 | 
					 | 
				
			||||||
            if i%2==0:
 | 
					 | 
				
			||||||
                gpt_response_collection_html[i] = inputs_show_user_array[i//2]
 | 
					 | 
				
			||||||
            else:
 | 
					 | 
				
			||||||
                # 先提取当前英文标题:
 | 
					 | 
				
			||||||
                cur_section_name = gpt_response_collection[i-1].split('\n')[0].split(" Part")[0]
 | 
					 | 
				
			||||||
                cur_value = cur_section_name + "\n" + gpt_response_collection_html[i]
 | 
					 | 
				
			||||||
                gpt_response_collection_html[i] = cur_value
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        final = ["", "", "一、论文概况",  "", "Abstract", paper_meta_info,  "二、论文翻译",  ""]
 | 
					 | 
				
			||||||
        final.extend(gpt_response_collection_html)
 | 
					 | 
				
			||||||
        for i, k in enumerate(final): 
 | 
					 | 
				
			||||||
            if i%2==0:
 | 
					 | 
				
			||||||
                orig = k
 | 
					 | 
				
			||||||
            if i%2==1:
 | 
					 | 
				
			||||||
                trans = k
 | 
					 | 
				
			||||||
                ch.add_row(a=orig, b=trans)
 | 
					 | 
				
			||||||
        create_report_file_name = f"{os.path.basename(fp)}.trans.html"
 | 
					 | 
				
			||||||
        html_file = ch.save_file(create_report_file_name)
 | 
					 | 
				
			||||||
        generated_html_files.append(html_file)
 | 
					 | 
				
			||||||
        promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot)
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
 | 
					    chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
 | 
				
			||||||
    yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
 | 
					    yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
 | 
				
			||||||
 | 
				
			|||||||
@ -1,17 +1,17 @@
 | 
				
			|||||||
from toolbox import CatchException, report_execption, write_results_to_file
 | 
					from toolbox import CatchException, report_execption, get_log_folder, gen_time_str
 | 
				
			||||||
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
 | 
					from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
 | 
				
			||||||
from toolbox import write_history_to_file, get_log_folder
 | 
					from toolbox import write_history_to_file, promote_file_to_downloadzone
 | 
				
			||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
 | 
					from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
 | 
				
			||||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
 | 
					from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
 | 
				
			||||||
from .crazy_utils import read_and_clean_pdf_text
 | 
					from .crazy_utils import read_and_clean_pdf_text
 | 
				
			||||||
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url
 | 
					from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf
 | 
				
			||||||
from colorful import *
 | 
					from colorful import *
 | 
				
			||||||
import glob
 | 
					import copy
 | 
				
			||||||
import os
 | 
					import os
 | 
				
			||||||
import math
 | 
					import math
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@CatchException
 | 
					@CatchException
 | 
				
			||||||
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port, only_chinese=True):
 | 
					def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    disable_auto_promotion(chatbot)
 | 
					    disable_auto_promotion(chatbot)
 | 
				
			||||||
    # 基本信息:功能、贡献者
 | 
					    # 基本信息:功能、贡献者
 | 
				
			||||||
@ -51,16 +51,15 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
 | 
				
			|||||||
    # 开始正式执行任务
 | 
					    # 开始正式执行任务
 | 
				
			||||||
    grobid_url = get_avail_grobid_url()
 | 
					    grobid_url = get_avail_grobid_url()
 | 
				
			||||||
    if grobid_url is not None:
 | 
					    if grobid_url is not None:
 | 
				
			||||||
        yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url, only_chinese=only_chinese)
 | 
					        yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
 | 
					        yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
 | 
				
			||||||
        yield from 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
 | 
					        yield from 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url, only_chinese=True):
 | 
					def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url):
 | 
				
			||||||
    import copy
 | 
					    import copy, json
 | 
				
			||||||
    import tiktoken
 | 
					    TOKEN_LIMIT_PER_FRAGMENT = 512
 | 
				
			||||||
    TOKEN_LIMIT_PER_FRAGMENT = 200
 | 
					 | 
				
			||||||
    generated_conclusion_files = []
 | 
					    generated_conclusion_files = []
 | 
				
			||||||
    generated_html_files = []
 | 
					    generated_html_files = []
 | 
				
			||||||
    DST_LANG = "中文"
 | 
					    DST_LANG = "中文"
 | 
				
			||||||
@ -68,137 +67,23 @@ def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwa
 | 
				
			|||||||
    for index, fp in enumerate(file_manifest):
 | 
					    for index, fp in enumerate(file_manifest):
 | 
				
			||||||
        chatbot.append(["当前进度:", f"正在连接GROBID服务,请稍候: {grobid_url}\n如果等待时间过长,请修改config中的GROBID_URL,可修改成本地GROBID服务。"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
 | 
					        chatbot.append(["当前进度:", f"正在连接GROBID服务,请稍候: {grobid_url}\n如果等待时间过长,请修改config中的GROBID_URL,可修改成本地GROBID服务。"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
 | 
				
			||||||
        article_dict = parse_pdf(fp, grobid_url)
 | 
					        article_dict = parse_pdf(fp, grobid_url)
 | 
				
			||||||
 | 
					        grobid_json_res = os.path.join(get_log_folder(), gen_time_str() + "grobid.json")
 | 
				
			||||||
 | 
					        with open(grobid_json_res, 'w+', encoding='utf8') as f:
 | 
				
			||||||
 | 
					            f.write(json.dumps(article_dict, indent=4, ensure_ascii=False))
 | 
				
			||||||
 | 
					        promote_file_to_downloadzone(grobid_json_res, chatbot=chatbot)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
        if article_dict is None: raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
 | 
					        if article_dict is None: raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
 | 
				
			||||||
        prompt = "以下是一篇学术论文的基本信息:\n"
 | 
					        yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG)
 | 
				
			||||||
        # title
 | 
					 | 
				
			||||||
        title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
 | 
					 | 
				
			||||||
        # authors
 | 
					 | 
				
			||||||
        authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n'
 | 
					 | 
				
			||||||
        # abstract
 | 
					 | 
				
			||||||
        abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
 | 
					 | 
				
			||||||
        # command
 | 
					 | 
				
			||||||
        prompt += f"请将题目和摘要翻译为{DST_LANG}。"
 | 
					 | 
				
			||||||
        meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # 单线,获取文章meta信息
 | 
					 | 
				
			||||||
        paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
 | 
					 | 
				
			||||||
            inputs=prompt,
 | 
					 | 
				
			||||||
            inputs_show_user=prompt,
 | 
					 | 
				
			||||||
            llm_kwargs=llm_kwargs,
 | 
					 | 
				
			||||||
            chatbot=chatbot, history=[],
 | 
					 | 
				
			||||||
            sys_prompt="You are an academic paper reader。",
 | 
					 | 
				
			||||||
        )
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # 多线,翻译
 | 
					 | 
				
			||||||
        inputs_array = []
 | 
					 | 
				
			||||||
        inputs_show_user_array = []
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # get_token_num
 | 
					 | 
				
			||||||
        from request_llm.bridge_all import model_info
 | 
					 | 
				
			||||||
        enc = model_info[llm_kwargs['llm_model']]['tokenizer']
 | 
					 | 
				
			||||||
        def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
 | 
					 | 
				
			||||||
        from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        def break_down(txt):
 | 
					 | 
				
			||||||
            raw_token_num = get_token_num(txt)
 | 
					 | 
				
			||||||
            if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT:
 | 
					 | 
				
			||||||
                return [txt]
 | 
					 | 
				
			||||||
            else:
 | 
					 | 
				
			||||||
                # raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
 | 
					 | 
				
			||||||
                # find a smooth token limit to achieve even seperation
 | 
					 | 
				
			||||||
                count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
 | 
					 | 
				
			||||||
                token_limit_smooth = raw_token_num // count + count
 | 
					 | 
				
			||||||
                return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        for section in article_dict.get('sections'):
 | 
					 | 
				
			||||||
            if len(section['text']) == 0: continue
 | 
					 | 
				
			||||||
            section_frags = break_down(section['text'])
 | 
					 | 
				
			||||||
            for i, fragment in enumerate(section_frags):
 | 
					 | 
				
			||||||
                heading = section['heading']
 | 
					 | 
				
			||||||
                if len(section_frags) > 1: heading += f' Part-{i+1}'
 | 
					 | 
				
			||||||
                inputs_array.append(
 | 
					 | 
				
			||||||
                    f"你需要翻译{heading}章节,内容如下: \n\n{fragment}"
 | 
					 | 
				
			||||||
                )
 | 
					 | 
				
			||||||
                inputs_show_user_array.append(
 | 
					 | 
				
			||||||
                    f"# {heading}\n\n{fragment}"
 | 
					 | 
				
			||||||
                )
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
 | 
					 | 
				
			||||||
            inputs_array=inputs_array,
 | 
					 | 
				
			||||||
            inputs_show_user_array=inputs_show_user_array,
 | 
					 | 
				
			||||||
            llm_kwargs=llm_kwargs,
 | 
					 | 
				
			||||||
            chatbot=chatbot,
 | 
					 | 
				
			||||||
            history_array=[meta for _ in inputs_array],
 | 
					 | 
				
			||||||
            sys_prompt_array=[
 | 
					 | 
				
			||||||
                "请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
 | 
					 | 
				
			||||||
        )
 | 
					 | 
				
			||||||
        if only_chinese:
 | 
					 | 
				
			||||||
            # 直接提取出翻译的内容,然后保存下去:
 | 
					 | 
				
			||||||
            chinese_list = []
 | 
					 | 
				
			||||||
            # 记录当前的大章节标题:
 | 
					 | 
				
			||||||
            last_section_name = ""
 | 
					 | 
				
			||||||
            for index, value in enumerate(gpt_response_collection):
 | 
					 | 
				
			||||||
                # 先挑选偶数序列号:
 | 
					 | 
				
			||||||
                if index % 2 != 0:
 | 
					 | 
				
			||||||
                    # 先提取当前英文标题:
 | 
					 | 
				
			||||||
                    cur_section_name = gpt_response_collection[index-1].split('\n')[0].split(" Part")[0]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
                    # 如果index是1的话,则直接使用first section name:
 | 
					 | 
				
			||||||
                    if cur_section_name != last_section_name:
 | 
					 | 
				
			||||||
                        cur_value = cur_section_name + '\n'
 | 
					 | 
				
			||||||
                        last_section_name = copy.deepcopy(cur_section_name)
 | 
					 | 
				
			||||||
                    else:
 | 
					 | 
				
			||||||
                        cur_value = ""
 | 
					 | 
				
			||||||
                    # 再判断翻译是否错误,如果错误,则直接贴原来的英文:
 | 
					 | 
				
			||||||
                    if "The OpenAI account associated" in value:
 | 
					 | 
				
			||||||
                        cur_value += gpt_response_collection[index-1]
 | 
					 | 
				
			||||||
                    else:
 | 
					 | 
				
			||||||
                        # 再做一个小修改:重新修改当前part的标题,默认用英文的
 | 
					 | 
				
			||||||
                        cur_value += value
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
                    chinese_list.append(cur_value)
 | 
					 | 
				
			||||||
        
 | 
					 | 
				
			||||||
            res_path = write_history_to_file(meta +  ["# Meta Translation" , paper_meta_info] + chinese_list, file_basename=None, file_fullname=None)
 | 
					 | 
				
			||||||
            promote_file_to_downloadzone(res_path, rename_file=os.path.basename(fp)+'.md', chatbot=chatbot)
 | 
					 | 
				
			||||||
            generated_conclusion_files.append(res_path)
 | 
					 | 
				
			||||||
        else:
 | 
					 | 
				
			||||||
            res_path = write_history_to_file(meta +  ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=None, file_fullname=None)
 | 
					 | 
				
			||||||
            promote_file_to_downloadzone(res_path, rename_file=os.path.basename(fp)+'.md', chatbot=chatbot)
 | 
					 | 
				
			||||||
            generated_conclusion_files.append(res_path)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        ch = construct_html() 
 | 
					 | 
				
			||||||
        orig = ""
 | 
					 | 
				
			||||||
        trans = ""
 | 
					 | 
				
			||||||
        gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
 | 
					 | 
				
			||||||
        for i,k in enumerate(gpt_response_collection_html): 
 | 
					 | 
				
			||||||
            if i%2==0:
 | 
					 | 
				
			||||||
                gpt_response_collection_html[i] = inputs_show_user_array[i//2]
 | 
					 | 
				
			||||||
            else:
 | 
					 | 
				
			||||||
                # 先提取当前英文标题:
 | 
					 | 
				
			||||||
                cur_section_name = gpt_response_collection[i-1].split('\n')[0].split(" Part")[0]
 | 
					 | 
				
			||||||
                cur_value = cur_section_name + "\n" + gpt_response_collection_html[i]
 | 
					 | 
				
			||||||
                gpt_response_collection_html[i] = cur_value
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        final = ["", "", "一、论文概况",  "", "Abstract", paper_meta_info,  "二、论文翻译",  ""]
 | 
					 | 
				
			||||||
        final.extend(gpt_response_collection_html)
 | 
					 | 
				
			||||||
        for i, k in enumerate(final): 
 | 
					 | 
				
			||||||
            if i%2==0:
 | 
					 | 
				
			||||||
                orig = k
 | 
					 | 
				
			||||||
            if i%2==1:
 | 
					 | 
				
			||||||
                trans = k
 | 
					 | 
				
			||||||
                ch.add_row(a=orig, b=trans)
 | 
					 | 
				
			||||||
        create_report_file_name = f"{os.path.basename(fp)}.trans.html"
 | 
					 | 
				
			||||||
        html_file = ch.save_file(create_report_file_name)
 | 
					 | 
				
			||||||
        generated_html_files.append(html_file)
 | 
					 | 
				
			||||||
        promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
 | 
					    chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
 | 
				
			||||||
    yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
 | 
					    yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
 | 
					def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    此函数已经弃用
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
    import copy
 | 
					    import copy
 | 
				
			||||||
    TOKEN_LIMIT_PER_FRAGMENT = 200
 | 
					    TOKEN_LIMIT_PER_FRAGMENT = 512
 | 
				
			||||||
    generated_conclusion_files = []
 | 
					    generated_conclusion_files = []
 | 
				
			||||||
    generated_html_files = []
 | 
					    generated_html_files = []
 | 
				
			||||||
    from crazy_functions.crazy_utils import construct_html
 | 
					    from crazy_functions.crazy_utils import construct_html
 | 
				
			||||||
@ -210,25 +95,20 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        # 递归地切割PDF文件
 | 
					        # 递归地切割PDF文件
 | 
				
			||||||
        from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
 | 
					        from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
 | 
				
			||||||
        # from .crazy_utils import split_main_text
 | 
					 | 
				
			||||||
        from request_llm.bridge_all import model_info
 | 
					        from request_llm.bridge_all import model_info
 | 
				
			||||||
        enc = model_info["gpt-3.5-turbo"]['tokenizer']
 | 
					        enc = model_info["gpt-3.5-turbo"]['tokenizer']
 | 
				
			||||||
        def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
 | 
					        def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
 | 
				
			||||||
        paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
 | 
					        paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
 | 
				
			||||||
            txt=file_content,  get_token_fn=get_token_num, limit=256)
 | 
					            txt=file_content,  get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
 | 
				
			||||||
        page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
 | 
					        page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
 | 
				
			||||||
            txt=page_one, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
 | 
					            txt=page_one, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
 | 
				
			||||||
        ## 用我这个分段切分。
 | 
					 | 
				
			||||||
        # paper_fragments = split_main_text(text=file_content, max_token=TOKEN_LIMIT_PER_FRAGMENT)
 | 
					 | 
				
			||||||
        # page_one_fragments = split_main_text(text=page_one, max_token=TOKEN_LIMIT_PER_FRAGMENT)
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # 为了更好的效果,我们剥离Introduction之后的部分(如果有)
 | 
					        # 为了更好的效果,我们剥离Introduction之后的部分(如果有)
 | 
				
			||||||
        # paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
 | 
					        paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
 | 
				
			||||||
        paper_meta = page_one_fragments[:]
 | 
					 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
        # 单线,获取文章meta信息
 | 
					        # 单线,获取文章meta信息
 | 
				
			||||||
        paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
 | 
					        paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
 | 
				
			||||||
            inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“作者单位”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分,不要提取Introduction部分的内容。请提取:{paper_meta}",
 | 
					            inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}",
 | 
				
			||||||
            inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。",
 | 
					            inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。",
 | 
				
			||||||
            llm_kwargs=llm_kwargs,
 | 
					            llm_kwargs=llm_kwargs,
 | 
				
			||||||
            chatbot=chatbot, history=[],
 | 
					            chatbot=chatbot, history=[],
 | 
				
			||||||
@ -244,62 +124,24 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
 | 
				
			|||||||
            chatbot=chatbot,
 | 
					            chatbot=chatbot,
 | 
				
			||||||
            history_array=[[paper_meta] for _ in paper_fragments],
 | 
					            history_array=[[paper_meta] for _ in paper_fragments],
 | 
				
			||||||
            sys_prompt_array=[
 | 
					            sys_prompt_array=[
 | 
				
			||||||
                "请你作为一个学术翻译,负责把学术论文的部分章节文本,准确翻译成中文。注意:1. 文章中的每一句话都要翻译,并且消除输入文本前后的无意义乱码,2. 请自动识别小章节标题(小标题长度不要超过20个字符,也不要少于3个字符),并且用'### xxx'的markdown格式标记出来。" for _ in paper_fragments],
 | 
					                "请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in paper_fragments],
 | 
				
			||||||
            # max_workers=5  # OpenAI所允许的最大并行过载
 | 
					            # max_workers=5  # OpenAI所允许的最大并行过载
 | 
				
			||||||
        )
 | 
					        )
 | 
				
			||||||
        gpt_response_collection_md = copy.deepcopy(gpt_response_collection)
 | 
					        gpt_response_collection_md = copy.deepcopy(gpt_response_collection)
 | 
				
			||||||
        # 整理报告的格式
 | 
					        # 整理报告的格式
 | 
				
			||||||
        add_origin = True
 | 
					        for i,k in enumerate(gpt_response_collection_md): 
 | 
				
			||||||
        for i, k in enumerate(gpt_response_collection_md): 
 | 
					            if i%2==0:
 | 
				
			||||||
            if i % 2 ==0:
 | 
					 | 
				
			||||||
                cur_trans = gpt_response_collection_md[i]
 | 
					 | 
				
			||||||
                # 做个小小的处理,把翻译的结果中非常长的“#”去掉
 | 
					 | 
				
			||||||
                temp_trans = ""
 | 
					 | 
				
			||||||
                for line_text in cur_trans.split('\n'):
 | 
					 | 
				
			||||||
                    if len(line_text) == 0:
 | 
					 | 
				
			||||||
                        # print("空行")
 | 
					 | 
				
			||||||
                        temp_trans += "\n\n"
 | 
					 | 
				
			||||||
                    else:
 | 
					 | 
				
			||||||
                        if "#" in line_text[0]:
 | 
					 | 
				
			||||||
                            if len(line_text.split(' ')) > 12:                                
 | 
					 | 
				
			||||||
                                temp_trans += line_text.replace('#', '')
 | 
					 | 
				
			||||||
                            else:
 | 
					 | 
				
			||||||
                                temp_trans += line_text
 | 
					 | 
				
			||||||
                                temp_trans += "\n\n"
 | 
					 | 
				
			||||||
                        else:
 | 
					 | 
				
			||||||
                            temp_trans += line_text + "\n\n"
 | 
					 | 
				
			||||||
                
 | 
					 | 
				
			||||||
                # gpt_response_collection_md[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection_md)//2}]: \n\n {paper_fragments[i//2].replace('#', '')}  \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection_md)//2}]:\n "
 | 
					 | 
				
			||||||
                if add_origin:
 | 
					 | 
				
			||||||
                gpt_response_collection_md[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection_md)//2}]: \n\n {paper_fragments[i//2].replace('#', '')}  \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection_md)//2}]:\n "
 | 
					                gpt_response_collection_md[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection_md)//2}]: \n\n {paper_fragments[i//2].replace('#', '')}  \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection_md)//2}]:\n "
 | 
				
			||||||
            else:
 | 
					            else:
 | 
				
			||||||
                    gpt_response_collection_md[i] = ""                
 | 
					                gpt_response_collection_md[i] = gpt_response_collection_md[i]
 | 
				
			||||||
            else:
 | 
					 | 
				
			||||||
                cur_trans = gpt_response_collection_md[i]
 | 
					 | 
				
			||||||
                # 做个小小的处理,把翻译的结果中非常长的“#”去掉
 | 
					 | 
				
			||||||
                temp_trans = ""
 | 
					 | 
				
			||||||
                for line_text in cur_trans.split('\n'):
 | 
					 | 
				
			||||||
                    if len(line_text) == 0:
 | 
					 | 
				
			||||||
                        # print("空行")
 | 
					 | 
				
			||||||
                        temp_trans += "\n\n"
 | 
					 | 
				
			||||||
                    else:
 | 
					 | 
				
			||||||
                        if "#" in line_text[0]:
 | 
					 | 
				
			||||||
                            if len(line_text) > 12:                                
 | 
					 | 
				
			||||||
                                temp_trans += line_text.replace('#', '')
 | 
					 | 
				
			||||||
                            else:
 | 
					 | 
				
			||||||
                                temp_trans += line_text
 | 
					 | 
				
			||||||
                                temp_trans += "\n\n"
 | 
					 | 
				
			||||||
                        else:
 | 
					 | 
				
			||||||
                            temp_trans += line_text + "\n\n"
 | 
					 | 
				
			||||||
                            
 | 
					 | 
				
			||||||
                gpt_response_collection_md[i] = temp_trans
 | 
					 | 
				
			||||||
        final = ["一、论文概况\n\n---\n\n", paper_meta_info.replace('# ', '### ') + '\n\n---\n\n', "二、论文翻译", ""]
 | 
					        final = ["一、论文概况\n\n---\n\n", paper_meta_info.replace('# ', '### ') + '\n\n---\n\n', "二、论文翻译", ""]
 | 
				
			||||||
        final.extend(gpt_response_collection_md)
 | 
					        final.extend(gpt_response_collection_md)
 | 
				
			||||||
        create_report_file_name = f"{os.path.basename(fp)}.trans.md"
 | 
					        create_report_file_name = f"{os.path.basename(fp)}.trans.md"
 | 
				
			||||||
        res = write_results_to_file(final, file_name=create_report_file_name)
 | 
					        res = write_history_to_file(final, create_report_file_name)
 | 
				
			||||||
 | 
					        promote_file_to_downloadzone(res, chatbot=chatbot)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # 更新UI
 | 
					        # 更新UI
 | 
				
			||||||
        generated_conclusion_files.append(f'./gpt_log/{create_report_file_name}')
 | 
					        generated_conclusion_files.append(f'{get_log_folder()}/{create_report_file_name}')
 | 
				
			||||||
        chatbot.append((f"{fp}完成了吗?", res))
 | 
					        chatbot.append((f"{fp}完成了吗?", res))
 | 
				
			||||||
        yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
 | 
					        yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
@ -216,7 +216,7 @@ def get_reduce_token_percent(text):
 | 
				
			|||||||
        return 0.5, '不详'
 | 
					        return 0.5, '不详'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def write_history_to_file(history, file_basename=None, file_fullname=None):
 | 
					def write_history_to_file(history, file_basename=None, file_fullname=None, auto_caption=True):
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
    将对话记录history以Markdown格式写入文件中。如果没有指定文件名,则使用当前时间生成文件名。
 | 
					    将对话记录history以Markdown格式写入文件中。如果没有指定文件名,则使用当前时间生成文件名。
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
@ -235,7 +235,7 @@ def write_history_to_file(history, file_basename=None, file_fullname=None):
 | 
				
			|||||||
                if type(content) != str: content = str(content)
 | 
					                if type(content) != str: content = str(content)
 | 
				
			||||||
            except:
 | 
					            except:
 | 
				
			||||||
                continue
 | 
					                continue
 | 
				
			||||||
            if i % 2 == 0:
 | 
					            if i % 2 == 0 and auto_caption:
 | 
				
			||||||
                f.write('## ')
 | 
					                f.write('## ')
 | 
				
			||||||
            try:
 | 
					            try:
 | 
				
			||||||
                f.write(content)
 | 
					                f.write(content)
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user