将autogen大模型调用底层hook掉
This commit is contained in:
parent
804599bbc3
commit
28119e343c
@ -211,7 +211,7 @@ ALLOW_RESET_CONFIG = False
|
||||
|
||||
|
||||
# 在使用AutoGen插件时,是否使用Docker容器运行代码
|
||||
AUTOGEN_USE_DOCKER = True
|
||||
AUTOGEN_USE_DOCKER = False
|
||||
|
||||
|
||||
# 临时的上传文件夹位置,请勿修改
|
||||
|
@ -539,7 +539,6 @@ def get_crazy_functions():
|
||||
except:
|
||||
print('Load function plugin failed')
|
||||
|
||||
try:
|
||||
from crazy_functions.多智能体 import 多智能体终端
|
||||
function_plugins.update({
|
||||
"多智能体终端(微软AutoGen)": {
|
||||
@ -549,8 +548,6 @@ def get_crazy_functions():
|
||||
"Function": HotReload(多智能体终端)
|
||||
}
|
||||
})
|
||||
except:
|
||||
print('Load function plugin failed')
|
||||
|
||||
# try:
|
||||
# from crazy_functions.chatglm微调工具 import 微调数据集生成
|
||||
|
@ -2,8 +2,6 @@ from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc,
|
||||
from toolbox import report_execption, get_log_folder, update_ui_lastest_msg, Singleton
|
||||
from crazy_functions.agent_fns.pipe import PluginMultiprocessManager, PipeCom
|
||||
from crazy_functions.agent_fns.general import AutoGenGeneral
|
||||
import time
|
||||
from autogen import AssistantAgent, UserProxyAgent
|
||||
|
||||
|
||||
|
||||
|
@ -1,584 +0,0 @@
|
||||
from time import sleep
|
||||
import logging
|
||||
import time
|
||||
from typing import List, Optional, Dict, Callable, Union
|
||||
import sys
|
||||
import shutil
|
||||
import numpy as np
|
||||
from flaml import tune, BlendSearch
|
||||
from flaml.tune.space import is_constant
|
||||
from flaml.automl.logger import logger_formatter
|
||||
from collections import defaultdict
|
||||
|
||||
try:
|
||||
import openai
|
||||
from openai.error import (
|
||||
ServiceUnavailableError,
|
||||
RateLimitError,
|
||||
APIError,
|
||||
InvalidRequestError,
|
||||
APIConnectionError,
|
||||
Timeout,
|
||||
AuthenticationError,
|
||||
)
|
||||
from openai import Completion as openai_Completion
|
||||
import diskcache
|
||||
|
||||
ERROR = None
|
||||
except ImportError:
|
||||
ERROR = ImportError("please install openai and diskcache to use the autogen.oai subpackage.")
|
||||
openai_Completion = object
|
||||
logger = logging.getLogger(__name__)
|
||||
if not logger.handlers:
|
||||
# Add the console handler.
|
||||
_ch = logging.StreamHandler(stream=sys.stdout)
|
||||
_ch.setFormatter(logger_formatter)
|
||||
logger.addHandler(_ch)
|
||||
|
||||
|
||||
class Completion(openai_Completion):
|
||||
"""A class for OpenAI completion API.
|
||||
|
||||
It also supports: ChatCompletion, Azure OpenAI API.
|
||||
"""
|
||||
|
||||
# set of models that support chat completion
|
||||
chat_models = {
|
||||
"gpt-3.5-turbo",
|
||||
"gpt-3.5-turbo-0301", # deprecate in Sep
|
||||
"gpt-3.5-turbo-0613",
|
||||
"gpt-3.5-turbo-16k",
|
||||
"gpt-3.5-turbo-16k-0613",
|
||||
"gpt-35-turbo",
|
||||
"gpt-35-turbo-16k",
|
||||
"gpt-4",
|
||||
"gpt-4-32k",
|
||||
"gpt-4-32k-0314", # deprecate in Sep
|
||||
"gpt-4-0314", # deprecate in Sep
|
||||
"gpt-4-0613",
|
||||
"gpt-4-32k-0613",
|
||||
}
|
||||
|
||||
# price per 1k tokens
|
||||
price1K = {
|
||||
"text-ada-001": 0.0004,
|
||||
"text-babbage-001": 0.0005,
|
||||
"text-curie-001": 0.002,
|
||||
"code-cushman-001": 0.024,
|
||||
"code-davinci-002": 0.1,
|
||||
"text-davinci-002": 0.02,
|
||||
"text-davinci-003": 0.02,
|
||||
"gpt-3.5-turbo": (0.0015, 0.002),
|
||||
"gpt-3.5-turbo-instruct": (0.0015, 0.002),
|
||||
"gpt-3.5-turbo-0301": (0.0015, 0.002), # deprecate in Sep
|
||||
"gpt-3.5-turbo-0613": (0.0015, 0.002),
|
||||
"gpt-3.5-turbo-16k": (0.003, 0.004),
|
||||
"gpt-3.5-turbo-16k-0613": (0.003, 0.004),
|
||||
"gpt-35-turbo": (0.0015, 0.002),
|
||||
"gpt-35-turbo-16k": (0.003, 0.004),
|
||||
"gpt-35-turbo-instruct": (0.0015, 0.002),
|
||||
"gpt-4": (0.03, 0.06),
|
||||
"gpt-4-32k": (0.06, 0.12),
|
||||
"gpt-4-0314": (0.03, 0.06), # deprecate in Sep
|
||||
"gpt-4-32k-0314": (0.06, 0.12), # deprecate in Sep
|
||||
"gpt-4-0613": (0.03, 0.06),
|
||||
"gpt-4-32k-0613": (0.06, 0.12),
|
||||
}
|
||||
|
||||
default_search_space = {
|
||||
"model": tune.choice(
|
||||
[
|
||||
"text-ada-001",
|
||||
"text-babbage-001",
|
||||
"text-davinci-003",
|
||||
"gpt-3.5-turbo",
|
||||
"gpt-4",
|
||||
]
|
||||
),
|
||||
"temperature_or_top_p": tune.choice(
|
||||
[
|
||||
{"temperature": tune.uniform(0, 2)},
|
||||
{"top_p": tune.uniform(0, 1)},
|
||||
]
|
||||
),
|
||||
"max_tokens": tune.lograndint(50, 1000),
|
||||
"n": tune.randint(1, 100),
|
||||
"prompt": "{prompt}",
|
||||
}
|
||||
|
||||
seed = 41
|
||||
cache_path = f".cache/{seed}"
|
||||
# retry after this many seconds
|
||||
retry_wait_time = 10
|
||||
# fail a request after hitting RateLimitError for this many seconds
|
||||
max_retry_period = 120
|
||||
# time out for request to openai server
|
||||
request_timeout = 60
|
||||
|
||||
openai_completion_class = not ERROR and openai.Completion
|
||||
_total_cost = 0
|
||||
optimization_budget = None
|
||||
|
||||
_history_dict = _count_create = None
|
||||
|
||||
@classmethod
|
||||
def set_cache(cls, seed: Optional[int] = 41, cache_path_root: Optional[str] = ".cache"):
|
||||
"""Set cache path.
|
||||
|
||||
Args:
|
||||
seed (int, Optional): The integer identifier for the pseudo seed.
|
||||
Results corresponding to different seeds will be cached in different places.
|
||||
cache_path (str, Optional): The root path for the cache.
|
||||
The complete cache path will be {cache_path}/{seed}.
|
||||
"""
|
||||
cls.seed = seed
|
||||
cls.cache_path = f"{cache_path_root}/{seed}"
|
||||
|
||||
@classmethod
|
||||
def clear_cache(cls, seed: Optional[int] = None, cache_path_root: Optional[str] = ".cache"):
|
||||
"""Clear cache.
|
||||
|
||||
Args:
|
||||
seed (int, Optional): The integer identifier for the pseudo seed.
|
||||
If omitted, all caches under cache_path_root will be cleared.
|
||||
cache_path (str, Optional): The root path for the cache.
|
||||
The complete cache path will be {cache_path}/{seed}.
|
||||
"""
|
||||
if seed is None:
|
||||
shutil.rmtree(cache_path_root, ignore_errors=True)
|
||||
return
|
||||
with diskcache.Cache(f"{cache_path_root}/{seed}") as cache:
|
||||
cache.clear()
|
||||
|
||||
@classmethod
|
||||
def _book_keeping(cls, config: Dict, response):
|
||||
"""Book keeping for the created completions."""
|
||||
if response != -1 and "cost" not in response:
|
||||
response["cost"] = cls.cost(response)
|
||||
if cls._history_dict is None:
|
||||
return
|
||||
if cls._history_compact:
|
||||
value = {
|
||||
"created_at": [],
|
||||
"cost": [],
|
||||
"token_count": [],
|
||||
}
|
||||
if "messages" in config:
|
||||
messages = config["messages"]
|
||||
if len(messages) > 1 and messages[-1]["role"] != "assistant":
|
||||
existing_key = get_key(messages[:-1])
|
||||
value = cls._history_dict.pop(existing_key, value)
|
||||
key = get_key(messages + [choice["message"] for choice in response["choices"]])
|
||||
else:
|
||||
key = get_key([config["prompt"]] + [choice.get("text") for choice in response["choices"]])
|
||||
value["created_at"].append(cls._count_create)
|
||||
value["cost"].append(response["cost"])
|
||||
value["token_count"].append(
|
||||
{
|
||||
"model": response["model"],
|
||||
"prompt_tokens": response["usage"]["prompt_tokens"],
|
||||
"completion_tokens": response["usage"].get("completion_tokens", 0),
|
||||
"total_tokens": response["usage"]["total_tokens"],
|
||||
}
|
||||
)
|
||||
cls._history_dict[key] = value
|
||||
cls._count_create += 1
|
||||
return
|
||||
cls._history_dict[cls._count_create] = {
|
||||
"request": config,
|
||||
"response": response.to_dict_recursive(),
|
||||
}
|
||||
cls._count_create += 1
|
||||
|
||||
@classmethod
|
||||
def _get_response(cls, config: Dict, raise_on_ratelimit_or_timeout=False, use_cache=True):
|
||||
"""Get the response from the openai api call.
|
||||
|
||||
Try cache first. If not found, call the openai api. If the api call fails, retry after retry_wait_time.
|
||||
"""
|
||||
config = config.copy()
|
||||
|
||||
|
||||
@classmethod
|
||||
def _get_max_valid_n(cls, key, max_tokens):
|
||||
# find the max value in max_valid_n_per_max_tokens
|
||||
# whose key is equal or larger than max_tokens
|
||||
return max(
|
||||
(value for k, value in cls._max_valid_n_per_max_tokens.get(key, {}).items() if k >= max_tokens),
|
||||
default=1,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _get_min_invalid_n(cls, key, max_tokens):
|
||||
# find the min value in min_invalid_n_per_max_tokens
|
||||
# whose key is equal or smaller than max_tokens
|
||||
return min(
|
||||
(value for k, value in cls._min_invalid_n_per_max_tokens.get(key, {}).items() if k <= max_tokens),
|
||||
default=None,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _get_region_key(cls, config):
|
||||
# get a key for the valid/invalid region corresponding to the given config
|
||||
config = cls._pop_subspace(config, always_copy=False)
|
||||
return (
|
||||
config["model"],
|
||||
config.get("prompt", config.get("messages")),
|
||||
config.get("stop"),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _update_invalid_n(cls, prune, region_key, max_tokens, num_completions):
|
||||
if prune:
|
||||
# update invalid n and prune this config
|
||||
cls._min_invalid_n_per_max_tokens[region_key] = invalid_n = cls._min_invalid_n_per_max_tokens.get(
|
||||
region_key, {}
|
||||
)
|
||||
invalid_n[max_tokens] = min(num_completions, invalid_n.get(max_tokens, np.inf))
|
||||
|
||||
@classmethod
|
||||
def _pop_subspace(cls, config, always_copy=True):
|
||||
if "subspace" in config:
|
||||
config = config.copy()
|
||||
config.update(config.pop("subspace"))
|
||||
return config.copy() if always_copy else config
|
||||
|
||||
@classmethod
|
||||
def _get_params_for_create(cls, config: Dict) -> Dict:
|
||||
"""Get the params for the openai api call from a config in the search space."""
|
||||
params = cls._pop_subspace(config)
|
||||
if cls._prompts:
|
||||
params["prompt"] = cls._prompts[config["prompt"]]
|
||||
else:
|
||||
params["messages"] = cls._messages[config["messages"]]
|
||||
if "stop" in params:
|
||||
params["stop"] = cls._stops and cls._stops[params["stop"]]
|
||||
temperature_or_top_p = params.pop("temperature_or_top_p", None)
|
||||
if temperature_or_top_p:
|
||||
params.update(temperature_or_top_p)
|
||||
if cls._config_list and "config_list" not in params:
|
||||
params["config_list"] = cls._config_list
|
||||
return params
|
||||
|
||||
@classmethod
|
||||
def create(
|
||||
cls,
|
||||
context: Optional[Dict] = None,
|
||||
use_cache: Optional[bool] = True,
|
||||
config_list: Optional[List[Dict]] = None,
|
||||
filter_func: Optional[Callable[[Dict, Dict, Dict], bool]] = None,
|
||||
raise_on_ratelimit_or_timeout: Optional[bool] = True,
|
||||
allow_format_str_template: Optional[bool] = False,
|
||||
**config,
|
||||
):
|
||||
"""Make a completion for a given context.
|
||||
|
||||
Args:
|
||||
context (Dict, Optional): The context to instantiate the prompt.
|
||||
It needs to contain keys that are used by the prompt template or the filter function.
|
||||
E.g., `prompt="Complete the following sentence: {prefix}, context={"prefix": "Today I feel"}`.
|
||||
The actual prompt will be:
|
||||
"Complete the following sentence: Today I feel".
|
||||
More examples can be found at [templating](https://microsoft.github.io/autogen/docs/Use-Cases/enhanced_inference#templating).
|
||||
use_cache (bool, Optional): Whether to use cached responses.
|
||||
config_list (List, Optional): List of configurations for the completion to try.
|
||||
The first one that does not raise an error will be used.
|
||||
Only the differences from the default config need to be provided.
|
||||
E.g.,
|
||||
|
||||
```python
|
||||
response = oai.Completion.create(
|
||||
config_list=[
|
||||
{
|
||||
"model": "gpt-4",
|
||||
"api_key": os.environ.get("AZURE_OPENAI_API_KEY"),
|
||||
"api_type": "azure",
|
||||
"api_base": os.environ.get("AZURE_OPENAI_API_BASE"),
|
||||
"api_version": "2023-03-15-preview",
|
||||
},
|
||||
{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"api_key": os.environ.get("OPENAI_API_KEY"),
|
||||
"api_type": "open_ai",
|
||||
"api_base": "https://api.openai.com/v1",
|
||||
},
|
||||
{
|
||||
"model": "llama-7B",
|
||||
"api_base": "http://127.0.0.1:8080",
|
||||
"api_type": "open_ai",
|
||||
}
|
||||
],
|
||||
prompt="Hi",
|
||||
)
|
||||
```
|
||||
|
||||
filter_func (Callable, Optional): A function that takes in the context, the config and the response and returns a boolean to indicate whether the response is valid. E.g.,
|
||||
|
||||
```python
|
||||
def yes_or_no_filter(context, config, response):
|
||||
return context.get("yes_or_no_choice", False) is False or any(
|
||||
text in ["Yes.", "No."] for text in oai.Completion.extract_text(response)
|
||||
)
|
||||
```
|
||||
|
||||
raise_on_ratelimit_or_timeout (bool, Optional): Whether to raise RateLimitError or Timeout when all configs fail.
|
||||
When set to False, -1 will be returned when all configs fail.
|
||||
allow_format_str_template (bool, Optional): Whether to allow format string template in the config.
|
||||
**config: Configuration for the openai API call. This is used as parameters for calling openai API.
|
||||
The "prompt" or "messages" parameter can contain a template (str or Callable) which will be instantiated with the context.
|
||||
Besides the parameters for the openai API call, it can also contain:
|
||||
- `max_retry_period` (int): the total time (in seconds) allowed for retrying failed requests.
|
||||
- `retry_wait_time` (int): the time interval to wait (in seconds) before retrying a failed request.
|
||||
- `seed` (int) for the cache. This is useful when implementing "controlled randomness" for the completion.
|
||||
|
||||
Returns:
|
||||
Responses from OpenAI API, with additional fields.
|
||||
- `cost`: the total cost.
|
||||
When `config_list` is provided, the response will contain a few more fields:
|
||||
- `config_id`: the index of the config in the config_list that is used to generate the response.
|
||||
- `pass_filter`: whether the response passes the filter function. None if no filter is provided.
|
||||
"""
|
||||
if ERROR:
|
||||
raise ERROR
|
||||
config_list = [
|
||||
{
|
||||
"model": "llama-7B",
|
||||
"api_base": "http://127.0.0.1:8080",
|
||||
"api_type": "open_ai",
|
||||
}
|
||||
]
|
||||
last = len(config_list) - 1
|
||||
cost = 0
|
||||
for i, each_config in enumerate(config_list):
|
||||
base_config = config.copy()
|
||||
base_config["allow_format_str_template"] = allow_format_str_template
|
||||
base_config.update(each_config)
|
||||
if i < last and filter_func is None and "max_retry_period" not in base_config:
|
||||
# max_retry_period = 0 to avoid retrying when no filter is given
|
||||
base_config["max_retry_period"] = 0
|
||||
try:
|
||||
response = cls.create(
|
||||
context,
|
||||
use_cache,
|
||||
raise_on_ratelimit_or_timeout=i < last or raise_on_ratelimit_or_timeout,
|
||||
**base_config,
|
||||
)
|
||||
if response == -1:
|
||||
return response
|
||||
pass_filter = filter_func is None or filter_func(
|
||||
context=context, base_config=config, response=response
|
||||
)
|
||||
if pass_filter or i == last:
|
||||
response["cost"] = cost + response["cost"]
|
||||
response["config_id"] = i
|
||||
response["pass_filter"] = pass_filter
|
||||
return response
|
||||
cost += response["cost"]
|
||||
except (AuthenticationError, RateLimitError, Timeout, InvalidRequestError):
|
||||
logger.debug(f"failed with config {i}", exc_info=1)
|
||||
if i == last:
|
||||
raise
|
||||
|
||||
params = cls._construct_params(context, config, allow_format_str_template=allow_format_str_template)
|
||||
if not use_cache:
|
||||
return cls._get_response(
|
||||
params, raise_on_ratelimit_or_timeout=raise_on_ratelimit_or_timeout, use_cache=False
|
||||
)
|
||||
seed = cls.seed
|
||||
if "seed" in params:
|
||||
cls.set_cache(params.pop("seed"))
|
||||
with diskcache.Cache(cls.cache_path) as cls._cache:
|
||||
cls.set_cache(seed)
|
||||
return cls._get_response(params, raise_on_ratelimit_or_timeout=raise_on_ratelimit_or_timeout)
|
||||
|
||||
@classmethod
|
||||
def instantiate(
|
||||
cls,
|
||||
template: Union[str, None],
|
||||
context: Optional[Dict] = None,
|
||||
allow_format_str_template: Optional[bool] = False,
|
||||
):
|
||||
if not context or template is None:
|
||||
return template
|
||||
if isinstance(template, str):
|
||||
return template.format(**context) if allow_format_str_template else template
|
||||
return template(context)
|
||||
|
||||
@classmethod
|
||||
def _construct_params(cls, context, config, prompt=None, messages=None, allow_format_str_template=False):
|
||||
params = config.copy()
|
||||
model = config["model"]
|
||||
prompt = config.get("prompt") if prompt is None else prompt
|
||||
messages = config.get("messages") if messages is None else messages
|
||||
# either "prompt" should be in config (for being compatible with non-chat models)
|
||||
# or "messages" should be in config (for tuning chat models only)
|
||||
if prompt is None and (model in cls.chat_models or issubclass(cls, ChatCompletion)):
|
||||
if messages is None:
|
||||
raise ValueError("Either prompt or messages should be in config for chat models.")
|
||||
if prompt is None:
|
||||
params["messages"] = (
|
||||
[
|
||||
{
|
||||
**m,
|
||||
"content": cls.instantiate(m["content"], context, allow_format_str_template),
|
||||
}
|
||||
if m.get("content")
|
||||
else m
|
||||
for m in messages
|
||||
]
|
||||
if context
|
||||
else messages
|
||||
)
|
||||
elif model in cls.chat_models or issubclass(cls, ChatCompletion):
|
||||
# convert prompt to messages
|
||||
params["messages"] = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": cls.instantiate(prompt, context, allow_format_str_template),
|
||||
},
|
||||
]
|
||||
params.pop("prompt", None)
|
||||
else:
|
||||
params["prompt"] = cls.instantiate(prompt, context, allow_format_str_template)
|
||||
return params
|
||||
|
||||
@classmethod
|
||||
def extract_text(cls, response: dict) -> List[str]:
|
||||
"""Extract the text from a completion or chat response.
|
||||
|
||||
Args:
|
||||
response (dict): The response from OpenAI API.
|
||||
|
||||
Returns:
|
||||
A list of text in the responses.
|
||||
"""
|
||||
choices = response["choices"]
|
||||
if "text" in choices[0]:
|
||||
return [choice["text"] for choice in choices]
|
||||
return [choice["message"].get("content", "") for choice in choices]
|
||||
|
||||
@classmethod
|
||||
def extract_text_or_function_call(cls, response: dict) -> List[str]:
|
||||
"""Extract the text or function calls from a completion or chat response.
|
||||
|
||||
Args:
|
||||
response (dict): The response from OpenAI API.
|
||||
|
||||
Returns:
|
||||
A list of text or function calls in the responses.
|
||||
"""
|
||||
choices = response["choices"]
|
||||
if "text" in choices[0]:
|
||||
return [choice["text"] for choice in choices]
|
||||
return [
|
||||
choice["message"] if "function_call" in choice["message"] else choice["message"].get("content", "")
|
||||
for choice in choices
|
||||
]
|
||||
|
||||
@classmethod
|
||||
@property
|
||||
def logged_history(cls) -> Dict:
|
||||
"""Return the book keeping dictionary."""
|
||||
return cls._history_dict
|
||||
|
||||
@classmethod
|
||||
def print_usage_summary(cls) -> Dict:
|
||||
"""Return the usage summary."""
|
||||
if cls._history_dict is None:
|
||||
print("No usage summary available.", flush=True)
|
||||
|
||||
token_count_summary = defaultdict(lambda: {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0})
|
||||
|
||||
if not cls._history_compact:
|
||||
source = cls._history_dict.values()
|
||||
total_cost = sum(msg_pair["response"]["cost"] for msg_pair in source)
|
||||
else:
|
||||
# source = cls._history_dict["token_count"]
|
||||
# total_cost = sum(cls._history_dict['cost'])
|
||||
total_cost = sum(sum(value_list["cost"]) for value_list in cls._history_dict.values())
|
||||
source = (
|
||||
token_data for value_list in cls._history_dict.values() for token_data in value_list["token_count"]
|
||||
)
|
||||
|
||||
for entry in source:
|
||||
if not cls._history_compact:
|
||||
model = entry["response"]["model"]
|
||||
token_data = entry["response"]["usage"]
|
||||
else:
|
||||
model = entry["model"]
|
||||
token_data = entry
|
||||
|
||||
token_count_summary[model]["prompt_tokens"] += token_data["prompt_tokens"]
|
||||
token_count_summary[model]["completion_tokens"] += token_data["completion_tokens"]
|
||||
token_count_summary[model]["total_tokens"] += token_data["total_tokens"]
|
||||
|
||||
print(f"Total cost: {total_cost}", flush=True)
|
||||
for model, counts in token_count_summary.items():
|
||||
print(
|
||||
f"Token count summary for model {model}: prompt_tokens: {counts['prompt_tokens']}, completion_tokens: {counts['completion_tokens']}, total_tokens: {counts['total_tokens']}",
|
||||
flush=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def start_logging(
|
||||
cls, history_dict: Optional[Dict] = None, compact: Optional[bool] = True, reset_counter: Optional[bool] = True
|
||||
):
|
||||
"""Start book keeping.
|
||||
|
||||
Args:
|
||||
history_dict (Dict): A dictionary for book keeping.
|
||||
If no provided, a new one will be created.
|
||||
compact (bool): Whether to keep the history dictionary compact.
|
||||
Compact history contains one key per conversation, and the value is a dictionary
|
||||
like:
|
||||
```python
|
||||
{
|
||||
"create_at": [0, 1],
|
||||
"cost": [0.1, 0.2],
|
||||
}
|
||||
```
|
||||
where "created_at" is the index of API calls indicating the order of all the calls,
|
||||
and "cost" is the cost of each call. This example shows that the conversation is based
|
||||
on two API calls. The compact format is useful for condensing the history of a conversation.
|
||||
If compact is False, the history dictionary will contain all the API calls: the key
|
||||
is the index of the API call, and the value is a dictionary like:
|
||||
```python
|
||||
{
|
||||
"request": request_dict,
|
||||
"response": response_dict,
|
||||
}
|
||||
```
|
||||
where request_dict is the request sent to OpenAI API, and response_dict is the response.
|
||||
For a conversation containing two API calls, the non-compact history dictionary will be like:
|
||||
```python
|
||||
{
|
||||
0: {
|
||||
"request": request_dict_0,
|
||||
"response": response_dict_0,
|
||||
},
|
||||
1: {
|
||||
"request": request_dict_1,
|
||||
"response": response_dict_1,
|
||||
},
|
||||
```
|
||||
The first request's messages plus the response is equal to the second request's messages.
|
||||
For a conversation with many turns, the non-compact history dictionary has a quadratic size
|
||||
while the compact history dict has a linear size.
|
||||
reset_counter (bool): whether to reset the counter of the number of API calls.
|
||||
"""
|
||||
cls._history_dict = {} if history_dict is None else history_dict
|
||||
cls._history_compact = compact
|
||||
cls._count_create = 0 if reset_counter or cls._count_create is None else cls._count_create
|
||||
|
||||
@classmethod
|
||||
def stop_logging(cls):
|
||||
"""End book keeping."""
|
||||
cls._history_dict = cls._count_create = None
|
||||
|
||||
|
||||
class ChatCompletion(Completion):
|
||||
"""A class for OpenAI API ChatCompletion. Share the same API as Completion."""
|
||||
|
||||
default_search_space = Completion.default_search_space.copy()
|
||||
default_search_space["model"] = tune.choice(["gpt-3.5-turbo", "gpt-4"])
|
||||
openai_completion_class = not ERROR and openai.ChatCompletion
|
@ -9,17 +9,27 @@ def gpt_academic_generate_oai_reply(
|
||||
sender,
|
||||
config,
|
||||
):
|
||||
from .bridge_autogen import Completion
|
||||
llm_config = self.llm_config if config is None else config
|
||||
if llm_config is False:
|
||||
return False, None
|
||||
if messages is None:
|
||||
messages = self._oai_messages[sender]
|
||||
|
||||
response = Completion.create(
|
||||
context=messages[-1].pop("context", None), messages=self._oai_system_message + messages, **llm_config
|
||||
inputs = messages[-1]['content']
|
||||
history = []
|
||||
for message in messages[:-1]:
|
||||
history.append(message['content'])
|
||||
context=messages[-1].pop("context", None)
|
||||
assert context is None, "预留参数 context 未实现"
|
||||
|
||||
reply = predict_no_ui_long_connection(
|
||||
inputs=inputs,
|
||||
llm_kwargs=llm_config,
|
||||
history=history,
|
||||
sys_prompt=self._oai_system_message[0]['content'],
|
||||
console_slience=True
|
||||
)
|
||||
return True, Completion.extract_text_or_function_call(response)[0]
|
||||
return True, reply
|
||||
|
||||
class AutoGenGeneral(PluginMultiprocessManager):
|
||||
def gpt_academic_print_override(self, user_proxy, message, sender):
|
||||
@ -45,32 +55,6 @@ class AutoGenGeneral(PluginMultiprocessManager):
|
||||
else:
|
||||
raise TimeoutError("等待用户输入超时")
|
||||
|
||||
# def gpt_academic_generate_oai_reply(self, agent, messages, sender, config):
|
||||
# from .bridge_autogen import Completion
|
||||
# if messages is None:
|
||||
# messages = agent._oai_messages[sender]
|
||||
|
||||
# def instantiate(
|
||||
# cls,
|
||||
# template: Union[str, None],
|
||||
# context: Optional[Dict] = None,
|
||||
# allow_format_str_template: Optional[bool] = False,
|
||||
# ):
|
||||
# if not context or template is None:
|
||||
# return template
|
||||
# if isinstance(template, str):
|
||||
# return template.format(**context) if allow_format_str_template else template
|
||||
# return template(context)
|
||||
|
||||
# res = predict_no_ui_long_connection(
|
||||
# messages[-1].pop("context", None),
|
||||
# llm_kwargs=self.llm_kwargs,
|
||||
# history=messages,
|
||||
# sys_prompt=agent._oai_system_message,
|
||||
# observe_window=None,
|
||||
# console_slience=False)
|
||||
# return True, res
|
||||
|
||||
def define_agents(self):
|
||||
raise NotImplementedError
|
||||
|
||||
@ -85,7 +69,7 @@ class AutoGenGeneral(PluginMultiprocessManager):
|
||||
for agent_kwargs in agents:
|
||||
agent_cls = agent_kwargs.pop('cls')
|
||||
kwargs = {
|
||||
'llm_config':{},
|
||||
'llm_config':self.llm_kwargs,
|
||||
'code_execution_config':code_execution_config
|
||||
}
|
||||
kwargs.update(agent_kwargs)
|
||||
|
@ -41,11 +41,11 @@ def 多智能体终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
||||
"azure-gpt-4",
|
||||
"azure-gpt-4-32k",
|
||||
]
|
||||
llm_kwargs['api_key'] = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
||||
if llm_kwargs['llm_model'] not in supported_llms:
|
||||
chatbot.append([f"处理任务: {txt}", f"当前插件只支持{str(supported_llms)}, 当前模型{llm_kwargs['llm_model']}."])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
llm_kwargs['api_key'] = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
||||
|
||||
# 检查当前的模型是否符合要求
|
||||
API_URL_REDIRECT = get_conf('API_URL_REDIRECT')
|
||||
@ -56,7 +56,9 @@ def 多智能体终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
import autogen, docker
|
||||
import autogen
|
||||
if get_conf("AUTOGEN_USE_DOCKER"):
|
||||
import docker
|
||||
except:
|
||||
chatbot.append([ f"处理任务: {txt}",
|
||||
f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pyautogen docker```。"])
|
||||
@ -67,7 +69,8 @@ def 多智能体终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
||||
try:
|
||||
import autogen
|
||||
import glob, os, time, subprocess
|
||||
subprocess.Popen(['docker', '--version'])
|
||||
if get_conf("AUTOGEN_USE_DOCKER"):
|
||||
subprocess.Popen(["docker", "--version"])
|
||||
except:
|
||||
chatbot.append([f"处理任务: {txt}", f"缺少docker运行环境!"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
@ -548,7 +548,7 @@ def LLM_CATCH_EXCEPTION(f):
|
||||
return decorated
|
||||
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window=[], console_slience=False):
|
||||
"""
|
||||
发送至LLM,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||
inputs:
|
||||
|
@ -15,6 +15,7 @@ Markdown
|
||||
pygments
|
||||
pymupdf
|
||||
openai
|
||||
pyautogen
|
||||
numpy
|
||||
arxiv
|
||||
rich
|
||||
|
Loading…
x
Reference in New Issue
Block a user