move token limit conf to bridge_all.py

This commit is contained in:
binary-husky 2023-12-04 10:39:10 +08:00
parent 9bfc3400f9
commit 3c03f240ba
3 changed files with 4 additions and 8 deletions

View File

@ -91,7 +91,7 @@ AVAIL_LLM_MODELS = ["gpt-3.5-turbo-1106","gpt-4-1106-preview","gpt-4-vision-prev
"gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
"api2d-gpt-3.5-turbo", 'api2d-gpt-3.5-turbo-16k',
"gpt-4", "gpt-4-32k", "azure-gpt-4", "api2d-gpt-4",
"chatglm3", "moss", "claude-2", "deepseekcoder"]
"chatglm3", "moss", "claude-2"]
# P.S. 其他可用的模型还包括 ["zhipuai", "qianfan", "deepseekcoder", "llama2", "qwen", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-random"
# "spark", "sparkv2", "sparkv3", "chatglm_onnx", "claude-1-100k", "claude-2", "internlm", "jittorllms_pangualpha", "jittorllms_llama"]
@ -114,9 +114,6 @@ CHATGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
LOCAL_MODEL_QUANT = "FP16" # 默认 "FP16" "INT4" 启用量化INT4版本 "INT8" 启用量化INT8版本
# 设置deepseekcoder运行时输入的最大token数超过4096没有意义对话过程爆显存可以适当调小
MAX_INPUT_TOKEN_LENGTH = 2048
# 设置gradio的并行线程数不需要修改
CONCURRENT_COUNT = 100

View File

@ -552,7 +552,7 @@ if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
"fn_with_ui": deepseekcoder_ui,
"fn_without_ui": deepseekcoder_noui,
"endpoint": None,
"max_token": 4096,
"max_token": 2048,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
}

View File

@ -8,7 +8,6 @@ from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
from threading import Thread
import torch
MAX_INPUT_TOKEN_LENGTH = get_conf("MAX_INPUT_TOKEN_LENGTH")
def download_huggingface_model(model_name, max_retry, local_dir):
from huggingface_hub import snapshot_download
for i in range(1, max_retry):
@ -94,8 +93,8 @@ class GetCoderLMHandle(LocalLLMHandle):
history.append({ 'role': 'user', 'content': query})
messages = history
inputs = self._tokenizer.apply_chat_template(messages, return_tensors="pt")
if inputs.shape[1] > MAX_INPUT_TOKEN_LENGTH:
inputs = inputs[:, -MAX_INPUT_TOKEN_LENGTH:]
if inputs.shape[1] > max_length:
inputs = inputs[:, -max_length:]
inputs = inputs.to(self._model.device)
generation_kwargs = dict(
inputs=inputs,