add chatgpt website
This commit is contained in:
parent
cc1be5585b
commit
3e2e81a968
@ -351,6 +351,22 @@ if "qwen" in AVAIL_LLM_MODELS:
|
|||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
|
if "chatgpt_website" in AVAIL_LLM_MODELS: # 接入一些逆向工程https://github.com/acheong08/ChatGPT-to-API/
|
||||||
|
try:
|
||||||
|
from .bridge_chatgpt_website import predict_no_ui_long_connection as chatgpt_website_noui
|
||||||
|
from .bridge_chatgpt_website import predict as chatgpt_website_ui
|
||||||
|
model_info.update({
|
||||||
|
"chatgpt_website": {
|
||||||
|
"fn_with_ui": chatgpt_website_ui,
|
||||||
|
"fn_without_ui": chatgpt_website_noui,
|
||||||
|
"endpoint": None,
|
||||||
|
"max_token": 4096,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
}
|
||||||
|
})
|
||||||
|
except:
|
||||||
|
print(trimmed_format_exc())
|
||||||
|
|
||||||
def LLM_CATCH_EXCEPTION(f):
|
def LLM_CATCH_EXCEPTION(f):
|
||||||
"""
|
"""
|
||||||
|
@ -186,16 +186,15 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
try:
|
try:
|
||||||
chunk_decoded = chunk.decode()
|
chunk_decoded = chunk.decode()
|
||||||
# 前者是API2D的结束条件,后者是OPENAI的结束条件
|
# 前者是API2D的结束条件,后者是OPENAI的结束条件
|
||||||
if 'data: [DONE]' in chunk_decoded:
|
if ('data: [DONE]' in chunk_decoded) or (len(json.loads(chunk_decoded[6:])['choices'][0]["delta"]) == 0):
|
||||||
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||||
logging.info(f'[response] {gpt_replying_buffer}')
|
logging.info(f'[response] {gpt_replying_buffer}')
|
||||||
break
|
break
|
||||||
# 处理数据流的主体
|
# 处理数据流的主体
|
||||||
chunkjson = json.loads(chunk_decoded[6:])
|
chunkjson = json.loads(chunk_decoded[6:])
|
||||||
status_text = f"finish_reason: {chunkjson['choices'][0]['finish_reason']}"
|
status_text = f"finish_reason: {chunkjson['choices'][0]['finish_reason']}"
|
||||||
delta = chunkjson['choices'][0]["delta"]
|
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
|
||||||
if "content" in delta:
|
gpt_replying_buffer = gpt_replying_buffer + json.loads(chunk_decoded[6:])['choices'][0]["delta"]["content"]
|
||||||
gpt_replying_buffer = gpt_replying_buffer + delta["content"]
|
|
||||||
history[-1] = gpt_replying_buffer
|
history[-1] = gpt_replying_buffer
|
||||||
chatbot[-1] = (history[-2], history[-1])
|
chatbot[-1] = (history[-2], history[-1])
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
|
||||||
|
297
request_llm/bridge_chatgpt_website.py
Normal file
297
request_llm/bridge_chatgpt_website.py
Normal file
@ -0,0 +1,297 @@
|
|||||||
|
# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目
|
||||||
|
|
||||||
|
"""
|
||||||
|
该文件中主要包含三个函数
|
||||||
|
|
||||||
|
不具备多线程能力的函数:
|
||||||
|
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
|
||||||
|
|
||||||
|
具备多线程调用能力的函数
|
||||||
|
2. predict_no_ui:高级实验性功能模块调用,不会实时显示在界面上,参数简单,可以多线程并行,方便实现复杂的功能逻辑
|
||||||
|
3. predict_no_ui_long_connection:在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程
|
||||||
|
"""
|
||||||
|
|
||||||
|
import json
|
||||||
|
import time
|
||||||
|
import gradio as gr
|
||||||
|
import logging
|
||||||
|
import traceback
|
||||||
|
import requests
|
||||||
|
import importlib
|
||||||
|
|
||||||
|
# config_private.py放自己的秘密如API和代理网址
|
||||||
|
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||||
|
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc
|
||||||
|
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG = \
|
||||||
|
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG')
|
||||||
|
|
||||||
|
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||||
|
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
||||||
|
|
||||||
|
def get_full_error(chunk, stream_response):
|
||||||
|
"""
|
||||||
|
获取完整的从Openai返回的报错
|
||||||
|
"""
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
chunk += next(stream_response)
|
||||||
|
except:
|
||||||
|
break
|
||||||
|
return chunk
|
||||||
|
|
||||||
|
|
||||||
|
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||||||
|
"""
|
||||||
|
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||||
|
inputs:
|
||||||
|
是本次问询的输入
|
||||||
|
sys_prompt:
|
||||||
|
系统静默prompt
|
||||||
|
llm_kwargs:
|
||||||
|
chatGPT的内部调优参数
|
||||||
|
history:
|
||||||
|
是之前的对话列表
|
||||||
|
observe_window = None:
|
||||||
|
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||||
|
"""
|
||||||
|
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||||
|
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
|
||||||
|
retry = 0
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
# make a POST request to the API endpoint, stream=False
|
||||||
|
from .bridge_all import model_info
|
||||||
|
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||||
|
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||||
|
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
|
||||||
|
except requests.exceptions.ReadTimeout as e:
|
||||||
|
retry += 1
|
||||||
|
traceback.print_exc()
|
||||||
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
|
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||||
|
|
||||||
|
stream_response = response.iter_lines()
|
||||||
|
result = ''
|
||||||
|
while True:
|
||||||
|
try: chunk = next(stream_response).decode()
|
||||||
|
except StopIteration:
|
||||||
|
break
|
||||||
|
except requests.exceptions.ConnectionError:
|
||||||
|
chunk = next(stream_response).decode() # 失败了,重试一次?再失败就没办法了。
|
||||||
|
if len(chunk)==0: continue
|
||||||
|
if not chunk.startswith('data:'):
|
||||||
|
error_msg = get_full_error(chunk.encode('utf8'), stream_response).decode()
|
||||||
|
if "reduce the length" in error_msg:
|
||||||
|
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
|
||||||
|
else:
|
||||||
|
raise RuntimeError("OpenAI拒绝了请求:" + error_msg)
|
||||||
|
if ('data: [DONE]' in chunk): break # api2d 正常完成
|
||||||
|
json_data = json.loads(chunk.lstrip('data:'))['choices'][0]
|
||||||
|
delta = json_data["delta"]
|
||||||
|
if len(delta) == 0: break
|
||||||
|
if "role" in delta: continue
|
||||||
|
if "content" in delta:
|
||||||
|
result += delta["content"]
|
||||||
|
if not console_slience: print(delta["content"], end='')
|
||||||
|
if observe_window is not None:
|
||||||
|
# 观测窗,把已经获取的数据显示出去
|
||||||
|
if len(observe_window) >= 1: observe_window[0] += delta["content"]
|
||||||
|
# 看门狗,如果超过期限没有喂狗,则终止
|
||||||
|
if len(observe_window) >= 2:
|
||||||
|
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||||
|
raise RuntimeError("用户取消了程序。")
|
||||||
|
else: raise RuntimeError("意外Json结构:"+delta)
|
||||||
|
if json_data['finish_reason'] == 'content_filter':
|
||||||
|
raise RuntimeError("由于提问含不合规内容被Azure过滤。")
|
||||||
|
if json_data['finish_reason'] == 'length':
|
||||||
|
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||||
|
"""
|
||||||
|
发送至chatGPT,流式获取输出。
|
||||||
|
用于基础的对话功能。
|
||||||
|
inputs 是本次问询的输入
|
||||||
|
top_p, temperature是chatGPT的内部调优参数
|
||||||
|
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||||
|
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||||
|
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||||
|
"""
|
||||||
|
if is_any_api_key(inputs):
|
||||||
|
chatbot._cookies['api_key'] = inputs
|
||||||
|
chatbot.append(("输入已识别为openai的api_key", what_keys(inputs)))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="api_key已导入") # 刷新界面
|
||||||
|
return
|
||||||
|
elif not is_any_api_key(chatbot._cookies['api_key']):
|
||||||
|
chatbot.append((inputs, "缺少api_key。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。"))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="缺少api_key") # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
if additional_fn is not None:
|
||||||
|
from core_functional import handle_core_functionality
|
||||||
|
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||||
|
|
||||||
|
raw_input = inputs
|
||||||
|
logging.info(f'[raw_input] {raw_input}')
|
||||||
|
chatbot.append((inputs, ""))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||||
|
|
||||||
|
try:
|
||||||
|
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
||||||
|
except RuntimeError as e:
|
||||||
|
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
history.append(inputs); history.append("")
|
||||||
|
|
||||||
|
retry = 0
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
# make a POST request to the API endpoint, stream=True
|
||||||
|
from .bridge_all import model_info
|
||||||
|
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||||
|
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||||
|
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
|
||||||
|
except:
|
||||||
|
retry += 1
|
||||||
|
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
|
||||||
|
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
||||||
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
|
|
||||||
|
gpt_replying_buffer = ""
|
||||||
|
|
||||||
|
is_head_of_the_stream = True
|
||||||
|
if stream:
|
||||||
|
stream_response = response.iter_lines()
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
chunk = next(stream_response)
|
||||||
|
except StopIteration:
|
||||||
|
# 非OpenAI官方接口的出现这样的报错,OpenAI和API2D不会走这里
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
error_msg = chunk_decoded
|
||||||
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="非Openai官方接口返回了错误:" + chunk.decode()) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# print(chunk.decode()[6:])
|
||||||
|
if is_head_of_the_stream and (r'"object":"error"' not in chunk.decode()):
|
||||||
|
# 数据流的第一帧不携带content
|
||||||
|
is_head_of_the_stream = False; continue
|
||||||
|
|
||||||
|
if chunk:
|
||||||
|
try:
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
# 前者是API2D的结束条件,后者是OPENAI的结束条件
|
||||||
|
if 'data: [DONE]' in chunk_decoded:
|
||||||
|
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||||
|
logging.info(f'[response] {gpt_replying_buffer}')
|
||||||
|
break
|
||||||
|
# 处理数据流的主体
|
||||||
|
chunkjson = json.loads(chunk_decoded[6:])
|
||||||
|
status_text = f"finish_reason: {chunkjson['choices'][0]['finish_reason']}"
|
||||||
|
delta = chunkjson['choices'][0]["delta"]
|
||||||
|
if "content" in delta:
|
||||||
|
gpt_replying_buffer = gpt_replying_buffer + delta["content"]
|
||||||
|
history[-1] = gpt_replying_buffer
|
||||||
|
chatbot[-1] = (history[-2], history[-1])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
|
||||||
|
except Exception as e:
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
|
||||||
|
chunk = get_full_error(chunk, stream_response)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
error_msg = chunk_decoded
|
||||||
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
||||||
|
print(error_msg)
|
||||||
|
return
|
||||||
|
|
||||||
|
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
|
||||||
|
from .bridge_all import model_info
|
||||||
|
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
|
||||||
|
if "reduce the length" in error_msg:
|
||||||
|
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
||||||
|
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
||||||
|
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
||||||
|
# history = [] # 清除历史
|
||||||
|
elif "does not exist" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格.")
|
||||||
|
elif "Incorrect API key" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由, 拒绝服务. " + openai_website)
|
||||||
|
elif "exceeded your current quota" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由, 拒绝服务." + openai_website)
|
||||||
|
elif "account is not active" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Your account is not active. OpenAI以账户失效为由, 拒绝服务." + openai_website)
|
||||||
|
elif "associated with a deactivated account" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] You are associated with a deactivated account. OpenAI以账户失效为由, 拒绝服务." + openai_website)
|
||||||
|
elif "bad forward key" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Bad forward key. API2D账户额度不足.")
|
||||||
|
elif "Not enough point" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Not enough point. API2D账户点数不足.")
|
||||||
|
else:
|
||||||
|
from toolbox import regular_txt_to_markdown
|
||||||
|
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||||
|
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
|
||||||
|
return chatbot, history
|
||||||
|
|
||||||
|
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||||
|
"""
|
||||||
|
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||||||
|
"""
|
||||||
|
if not is_any_api_key(llm_kwargs['api_key']):
|
||||||
|
raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。")
|
||||||
|
|
||||||
|
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
||||||
|
|
||||||
|
headers = {
|
||||||
|
"Content-Type": "application/json",
|
||||||
|
"Authorization": f"Bearer {api_key}"
|
||||||
|
}
|
||||||
|
if API_ORG.startswith('org-'): headers.update({"OpenAI-Organization": API_ORG})
|
||||||
|
if llm_kwargs['llm_model'].startswith('azure-'): headers.update({"api-key": api_key})
|
||||||
|
|
||||||
|
conversation_cnt = len(history) // 2
|
||||||
|
|
||||||
|
messages = [{"role": "system", "content": system_prompt}]
|
||||||
|
if conversation_cnt:
|
||||||
|
for index in range(0, 2*conversation_cnt, 2):
|
||||||
|
what_i_have_asked = {}
|
||||||
|
what_i_have_asked["role"] = "user"
|
||||||
|
what_i_have_asked["content"] = history[index]
|
||||||
|
what_gpt_answer = {}
|
||||||
|
what_gpt_answer["role"] = "assistant"
|
||||||
|
what_gpt_answer["content"] = history[index+1]
|
||||||
|
if what_i_have_asked["content"] != "":
|
||||||
|
if what_gpt_answer["content"] == "": continue
|
||||||
|
if what_gpt_answer["content"] == timeout_bot_msg: continue
|
||||||
|
messages.append(what_i_have_asked)
|
||||||
|
messages.append(what_gpt_answer)
|
||||||
|
else:
|
||||||
|
messages[-1]['content'] = what_gpt_answer['content']
|
||||||
|
|
||||||
|
what_i_ask_now = {}
|
||||||
|
what_i_ask_now["role"] = "user"
|
||||||
|
what_i_ask_now["content"] = inputs
|
||||||
|
messages.append(what_i_ask_now)
|
||||||
|
|
||||||
|
payload = {
|
||||||
|
"model": llm_kwargs['llm_model'].strip('api2d-'),
|
||||||
|
"messages": messages,
|
||||||
|
"temperature": llm_kwargs['temperature'], # 1.0,
|
||||||
|
"top_p": llm_kwargs['top_p'], # 1.0,
|
||||||
|
"n": 1,
|
||||||
|
"stream": stream,
|
||||||
|
"presence_penalty": 0,
|
||||||
|
"frequency_penalty": 0,
|
||||||
|
}
|
||||||
|
try:
|
||||||
|
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
|
||||||
|
except:
|
||||||
|
print('输入中可能存在乱码。')
|
||||||
|
return headers,payload
|
||||||
|
|
||||||
|
|
Loading…
x
Reference in New Issue
Block a user