diff --git a/request_llm/bridge_chatgpt.py b/request_llm/bridge_chatgpt.py index b13b521..05b0467 100644 --- a/request_llm/bridge_chatgpt.py +++ b/request_llm/bridge_chatgpt.py @@ -42,17 +42,17 @@ def get_full_error(chunk, stream_response): def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False): """ - 发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。 - inputs: - 是本次问询的输入 - sys_prompt: - 系统静默prompt - llm_kwargs: - chatGPT的内部调优参数 - history: - 是之前的对话列表 - observe_window = None: - 用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗 + 发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。 + inputs: + 是本次问询的输入 + sys_prompt: + 系统静默prompt + llm_kwargs: + chatGPT的内部调优参数 + history: + 是之前的对话列表 + observe_window = None: + 用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗 """ watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可 headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True) @@ -105,13 +105,13 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None): """ - 发送至chatGPT,流式获取输出。 - 用于基础的对话功能。 - inputs 是本次问询的输入 - top_p, temperature是chatGPT的内部调优参数 - history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误) - chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容 - additional_fn代表点击的哪个按钮,按钮见functional.py + 发送至chatGPT,流式获取输出。 + 用于基础的对话功能。 + inputs 是本次问询的输入 + top_p, temperature是chatGPT的内部调优参数 + history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误) + chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容 + additional_fn代表点击的哪个按钮,按钮见functional.py """ if is_any_api_key(inputs): chatbot._cookies['api_key'] = inputs @@ -205,7 +205,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp def generate_payload(inputs, llm_kwargs, history, system_prompt, stream): """ - 整合所有信息,选择LLM模型,生成http请求,为发送请求做准备 + 整合所有信息,选择LLM模型,生成http请求,为发送请求做准备 """ if not is_any_api_key(llm_kwargs['api_key']): raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。") diff --git a/toolbox.py b/toolbox.py index 865e92e..42c7a85 100644 --- a/toolbox.py +++ b/toolbox.py @@ -461,11 +461,10 @@ def read_single_conf_with_lru_cache(arg): if is_any_api_key(r): print亮绿(f"[API_KEY] 您的 API_KEY 是: {r[:15]}*** API_KEY 导入成功") else: - print亮红( "[API_KEY] 正确的 API_KEY 是 'sk-' + '48 位大小写字母数字' 的组合,请在config文件中修改API密钥, 添加海外代理之后再运行。" + \ - "(如果您刚更新过代码,请确保旧版config_private文件中没有遗留任何新增键值)") + print亮红( "[API_KEY] 正确的 API_KEY 是'sk'开头的51位密钥(OpenAI),或者 'fk'开头的41位密钥,请在config文件中修改API密钥之后再运行。") if arg == 'proxies': if r is None: - print亮红('[PROXY] 网络代理状态:未配置。无代理状态下很可能无法访问。建议:检查USE_PROXY选项是否修改。') + print亮红('[PROXY] 网络代理状态:未配置。无代理状态下很可能无法访问OpenAI家族的模型。建议:检查USE_PROXY选项是否修改。') else: print亮绿('[PROXY] 网络代理状态:已配置。配置信息如下:', r) assert isinstance(r, dict), 'proxies格式错误,请注意proxies选项的格式,不要遗漏括号。'