update
This commit is contained in:
parent
ecdeda8e92
commit
44b40ff726
91
colorful.py
Normal file
91
colorful.py
Normal file
@ -0,0 +1,91 @@
|
||||
import platform
|
||||
from sys import stdout
|
||||
|
||||
if platform.system()=="Linux":
|
||||
pass
|
||||
else:
|
||||
from colorama import init
|
||||
init()
|
||||
|
||||
# Do you like the elegance of Chinese characters?
|
||||
def print红(*kw,**kargs):
|
||||
print("\033[0;31m",*kw,"\033[0m",**kargs)
|
||||
def print绿(*kw,**kargs):
|
||||
print("\033[0;32m",*kw,"\033[0m",**kargs)
|
||||
def print黄(*kw,**kargs):
|
||||
print("\033[0;33m",*kw,"\033[0m",**kargs)
|
||||
def print蓝(*kw,**kargs):
|
||||
print("\033[0;34m",*kw,"\033[0m",**kargs)
|
||||
def print紫(*kw,**kargs):
|
||||
print("\033[0;35m",*kw,"\033[0m",**kargs)
|
||||
def print靛(*kw,**kargs):
|
||||
print("\033[0;36m",*kw,"\033[0m",**kargs)
|
||||
|
||||
def print亮红(*kw,**kargs):
|
||||
print("\033[1;31m",*kw,"\033[0m",**kargs)
|
||||
def print亮绿(*kw,**kargs):
|
||||
print("\033[1;32m",*kw,"\033[0m",**kargs)
|
||||
def print亮黄(*kw,**kargs):
|
||||
print("\033[1;33m",*kw,"\033[0m",**kargs)
|
||||
def print亮蓝(*kw,**kargs):
|
||||
print("\033[1;34m",*kw,"\033[0m",**kargs)
|
||||
def print亮紫(*kw,**kargs):
|
||||
print("\033[1;35m",*kw,"\033[0m",**kargs)
|
||||
def print亮靛(*kw,**kargs):
|
||||
print("\033[1;36m",*kw,"\033[0m",**kargs)
|
||||
|
||||
|
||||
|
||||
def print亮红(*kw,**kargs):
|
||||
print("\033[1;31m",*kw,"\033[0m",**kargs)
|
||||
def print亮绿(*kw,**kargs):
|
||||
print("\033[1;32m",*kw,"\033[0m",**kargs)
|
||||
def print亮黄(*kw,**kargs):
|
||||
print("\033[1;33m",*kw,"\033[0m",**kargs)
|
||||
def print亮蓝(*kw,**kargs):
|
||||
print("\033[1;34m",*kw,"\033[0m",**kargs)
|
||||
def print亮紫(*kw,**kargs):
|
||||
print("\033[1;35m",*kw,"\033[0m",**kargs)
|
||||
def print亮靛(*kw,**kargs):
|
||||
print("\033[1;36m",*kw,"\033[0m",**kargs)
|
||||
|
||||
print_red = print红
|
||||
print_green = print绿
|
||||
print_yellow = print黄
|
||||
print_blue = print蓝
|
||||
print_purple = print紫
|
||||
print_indigo = print靛
|
||||
|
||||
print_bold_red = print亮红
|
||||
print_bold_green = print亮绿
|
||||
print_bold_yellow = print亮黄
|
||||
print_bold_blue = print亮蓝
|
||||
print_bold_purple = print亮紫
|
||||
print_bold_indigo = print亮靛
|
||||
|
||||
if not stdout.isatty():
|
||||
# redirection, avoid a fucked up log file
|
||||
print红 = print
|
||||
print绿 = print
|
||||
print黄 = print
|
||||
print蓝 = print
|
||||
print紫 = print
|
||||
print靛 = print
|
||||
print亮红 = print
|
||||
print亮绿 = print
|
||||
print亮黄 = print
|
||||
print亮蓝 = print
|
||||
print亮紫 = print
|
||||
print亮靛 = print
|
||||
print_red = print
|
||||
print_green = print
|
||||
print_yellow = print
|
||||
print_blue = print
|
||||
print_purple = print
|
||||
print_indigo = print
|
||||
print_bold_red = print
|
||||
print_bold_green = print
|
||||
print_bold_yellow = print
|
||||
print_bold_blue = print
|
||||
print_bold_purple = print
|
||||
print_bold_indigo = print
|
@ -21,6 +21,9 @@ WEB_PORT = -1
|
||||
# 如果OpenAI不响应(网络卡顿、代理失败、KEY失效),重试的次数限制
|
||||
MAX_RETRY = 2
|
||||
|
||||
# 选择的OpenAI模型是(gpt4现在只对申请成功的人开放)
|
||||
LLM_MODEL = "gpt-3.5-turbo"
|
||||
|
||||
# 检查一下是不是忘了改config
|
||||
if API_KEY == "sk-此处填API秘钥":
|
||||
assert False, "请在config文件中修改API密钥, 添加海外代理之后再运行"
|
@ -1,26 +1,18 @@
|
||||
# """
|
||||
# 'primary' for main call-to-action,
|
||||
# 'secondary' for a more subdued style,
|
||||
# 'stop' for a stop button.
|
||||
# """
|
||||
|
||||
from predict import predict_no_ui
|
||||
fast_debug = False
|
||||
|
||||
def 自我程序解构简单案例(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
|
||||
import time
|
||||
from predict import predict_no_ui_no_history
|
||||
def 高阶功能模板函数(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
|
||||
for i in range(5):
|
||||
i_say = f'我给出一个数字,你给出该数字的平方。我给出数字:{i}'
|
||||
gpt_say = predict_no_ui_no_history(inputs=i_say, top_p=top_p, temperature=temperature)
|
||||
gpt_say = predict_no_ui(inputs=i_say, top_p=top_p, temperature=temperature)
|
||||
chatbot.append((i_say, gpt_say))
|
||||
history.append(i_say)
|
||||
history.append(gpt_say)
|
||||
yield chatbot, history, '正常'
|
||||
time.sleep(10)
|
||||
|
||||
|
||||
def 解析项目本身(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
|
||||
import time, glob, os
|
||||
from predict import predict_no_ui
|
||||
file_manifest = [f for f in glob.glob('*.py')]
|
||||
|
||||
for index, fp in enumerate(file_manifest):
|
||||
@ -30,7 +22,7 @@ def 解析项目本身(txt, top_p, temperature, chatbot, history, systemPromptTx
|
||||
前言 = "接下来请你分析自己的程序构成,别紧张," if index==0 else ""
|
||||
i_say = 前言 + f'请对下面的程序文件做一个概述文件名是{fp},文件代码是 ```{file_content}```'
|
||||
i_say_show_user = 前言 + f'[{index}/{len(file_manifest)}] 请对下面的程序文件做一个概述: {os.path.abspath(fp)}'
|
||||
chatbot.append((i_say_show_user, "[local] waiting gpt response."))
|
||||
chatbot.append((i_say_show_user, "[waiting gpt response]"))
|
||||
yield chatbot, history, '正常'
|
||||
|
||||
if not fast_debug:
|
||||
@ -43,7 +35,7 @@ def 解析项目本身(txt, top_p, temperature, chatbot, history, systemPromptTx
|
||||
time.sleep(2)
|
||||
|
||||
i_say = f'根据以上你自己的分析,对程序的整体功能和构架做出概括。然后用一张markdown表格整理每个文件的功能(包括{file_manifest})。'
|
||||
chatbot.append((i_say, "[local] waiting gpt response."))
|
||||
chatbot.append((i_say, "[waiting gpt response]"))
|
||||
yield chatbot, history, '正常'
|
||||
|
||||
if not fast_debug:
|
||||
@ -64,7 +56,6 @@ def report_execption(chatbot, history, a, b):
|
||||
|
||||
def 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
|
||||
import time, glob, os
|
||||
from predict import predict_no_ui
|
||||
print('begin analysis on:', file_manifest)
|
||||
for index, fp in enumerate(file_manifest):
|
||||
with open(fp, 'r', encoding='utf-8') as f:
|
||||
@ -73,7 +64,7 @@ def 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot,
|
||||
前言 = "接下来请你逐文件分析下面的工程" if index==0 else ""
|
||||
i_say = 前言 + f'请对下面的程序文件做一个概述文件名是{os.path.relpath(fp, project_folder)},文件代码是 ```{file_content}```'
|
||||
i_say_show_user = 前言 + f'[{index}/{len(file_manifest)}] 请对下面的程序文件做一个概述: {os.path.abspath(fp)}'
|
||||
chatbot.append((i_say_show_user, "[local] waiting gpt response."))
|
||||
chatbot.append((i_say_show_user, "[waiting gpt response]"))
|
||||
print('[1] yield chatbot, history')
|
||||
yield chatbot, history, '正常'
|
||||
|
||||
@ -98,7 +89,7 @@ def 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot,
|
||||
|
||||
all_file = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(file_manifest)])
|
||||
i_say = f'根据以上你自己的分析,对程序的整体功能和构架做出概括。然后用一张markdown表格整理每个文件的功能(包括{all_file})。'
|
||||
chatbot.append((i_say, "[local] waiting gpt response."))
|
||||
chatbot.append((i_say, "[waiting gpt response]"))
|
||||
yield chatbot, history, '正常'
|
||||
|
||||
if not fast_debug:
|
||||
@ -159,22 +150,22 @@ def 解析一个C项目的头文件(txt, top_p, temperature, chatbot, history, s
|
||||
|
||||
def get_crazy_functionals():
|
||||
return {
|
||||
"程序解构简单案例": {
|
||||
"Color": "stop", # 按钮颜色
|
||||
"Function": 自我程序解构简单案例
|
||||
},
|
||||
"请解析并解构此项目本身": {
|
||||
"[实验功能] 请解析并解构此项目本身": {
|
||||
"Color": "stop", # 按钮颜色
|
||||
"Function": 解析项目本身
|
||||
},
|
||||
"解析一整个Python项目(输入栏给定项目完整目录)": {
|
||||
"[实验功能] 解析一整个Python项目(输入栏给定项目完整目录)": {
|
||||
"Color": "stop", # 按钮颜色
|
||||
"Function": 解析一个Python项目
|
||||
},
|
||||
"解析一整个C++项目的头文件(输入栏给定项目完整目录)": {
|
||||
"[实验功能] 解析一整个C++项目的头文件(输入栏给定项目完整目录)": {
|
||||
"Color": "stop", # 按钮颜色
|
||||
"Function": 解析一个C项目的头文件
|
||||
},
|
||||
"[实验功能] 高阶功能模板函数": {
|
||||
"Color": "stop", # 按钮颜色
|
||||
"Function": 高阶功能模板函数
|
||||
},
|
||||
|
||||
}
|
||||
|
||||
|
2
main.py
2
main.py
@ -106,7 +106,7 @@ with gr.Blocks() as demo:
|
||||
# submitBtn.click(reset_textbox, [], [txt])
|
||||
for k in functional:
|
||||
functional[k]["Button"].click(predict,
|
||||
[txt, top_p, temperature, chatbot, history, systemPromptTxt, FALSE, TRUE, gr.State(k)], [chatbot, history, statusDisplay], show_progress=True)
|
||||
[txt, top_p, temperature, chatbot, history, systemPromptTxt, TRUE, gr.State(k)], [chatbot, history, statusDisplay], show_progress=True)
|
||||
for k in crazy_functional:
|
||||
crazy_functional[k]["Button"].click(crazy_functional[k]["Function"],
|
||||
[txt, top_p, temperature, chatbot, history, systemPromptTxt, gr.State(PORT)], [chatbot, history, statusDisplay])
|
||||
|
182
predict.py
182
predict.py
@ -6,11 +6,12 @@ import logging
|
||||
import traceback
|
||||
import requests
|
||||
import importlib
|
||||
from colorful import *
|
||||
|
||||
# config_private.py放自己的秘密如API和代理网址
|
||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||
try: from config_private import proxies, API_URL, API_KEY, TIMEOUT_SECONDS, MAX_RETRY
|
||||
except: from config import proxies, API_URL, API_KEY, TIMEOUT_SECONDS, MAX_RETRY
|
||||
try: from config_private import proxies, API_URL, API_KEY, TIMEOUT_SECONDS, MAX_RETRY, LLM_MODEL
|
||||
except: from config import proxies, API_URL, API_KEY, TIMEOUT_SECONDS, MAX_RETRY, LLM_MODEL
|
||||
|
||||
timeout_bot_msg = '[local] Request timeout, network error. please check proxy settings in config.py.'
|
||||
|
||||
@ -23,51 +24,12 @@ def get_full_error(chunk, stream_response):
|
||||
return chunk
|
||||
|
||||
def predict_no_ui(inputs, top_p, temperature, history=[]):
|
||||
messages = [{"role": "system", "content": ""}]
|
||||
|
||||
#
|
||||
chat_counter = len(history) // 2
|
||||
if chat_counter > 0:
|
||||
for index in range(0, 2*chat_counter, 2):
|
||||
what_i_have_asked = {}
|
||||
what_i_have_asked["role"] = "user"
|
||||
what_i_have_asked["content"] = history[index]
|
||||
what_gpt_answer = {}
|
||||
what_gpt_answer["role"] = "assistant"
|
||||
what_gpt_answer["content"] = history[index+1]
|
||||
if what_i_have_asked["content"] != "":
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
else:
|
||||
messages[-1]['content'] = what_gpt_answer['content']
|
||||
|
||||
what_i_ask_now = {}
|
||||
what_i_ask_now["role"] = "user"
|
||||
what_i_ask_now["content"] = inputs
|
||||
messages.append(what_i_ask_now)
|
||||
|
||||
# messages
|
||||
payload = {
|
||||
"model": "gpt-3.5-turbo",
|
||||
# "model": "gpt-4",
|
||||
"messages": messages,
|
||||
"temperature": temperature, # 1.0,
|
||||
"top_p": top_p, # 1.0,
|
||||
"n": 1,
|
||||
"stream": False,
|
||||
"presence_penalty": 0,
|
||||
"frequency_penalty": 0,
|
||||
}
|
||||
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {API_KEY}"
|
||||
}
|
||||
headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt="", stream=False)
|
||||
|
||||
retry = 0
|
||||
while True:
|
||||
try:
|
||||
# make a POST request to the API endpoint using the requests.post method, passing in stream=True
|
||||
# make a POST request to the API endpoint, stream=False
|
||||
response = requests.post(API_URL, headers=headers, proxies=proxies,
|
||||
json=payload, stream=False, timeout=TIMEOUT_SECONDS*2); break
|
||||
except TimeoutError as e:
|
||||
@ -84,9 +46,7 @@ def predict_no_ui(inputs, top_p, temperature, history=[]):
|
||||
raise ConnectionAbortedError("Json解析不合常规,可能是文本过长" + response.text)
|
||||
|
||||
|
||||
|
||||
|
||||
def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt='', retry=False,
|
||||
def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt='',
|
||||
stream = True, additional_fn=None):
|
||||
|
||||
if additional_fn is not None:
|
||||
@ -101,60 +61,13 @@ def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt=''
|
||||
chatbot.append((inputs, ""))
|
||||
yield chatbot, history, "等待响应"
|
||||
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {API_KEY}"
|
||||
}
|
||||
|
||||
chat_counter = len(history) // 2
|
||||
|
||||
print(f"chat_counter - {chat_counter}")
|
||||
|
||||
messages = [{"role": "system", "content": system_prompt}]
|
||||
if chat_counter:
|
||||
for index in range(0, 2*chat_counter, 2):
|
||||
what_i_have_asked = {}
|
||||
what_i_have_asked["role"] = "user"
|
||||
what_i_have_asked["content"] = history[index]
|
||||
what_gpt_answer = {}
|
||||
what_gpt_answer["role"] = "assistant"
|
||||
what_gpt_answer["content"] = history[index+1]
|
||||
if what_i_have_asked["content"] != "":
|
||||
if not (what_gpt_answer["content"] != "" or retry): continue
|
||||
if what_gpt_answer["content"] == timeout_bot_msg: continue
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
else:
|
||||
messages[-1]['content'] = what_gpt_answer['content']
|
||||
|
||||
if retry and chat_counter:
|
||||
messages.pop()
|
||||
else:
|
||||
what_i_ask_now = {}
|
||||
what_i_ask_now["role"] = "user"
|
||||
what_i_ask_now["content"] = inputs
|
||||
messages.append(what_i_ask_now)
|
||||
chat_counter += 1
|
||||
|
||||
# messages
|
||||
payload = {
|
||||
"model": "gpt-3.5-turbo",
|
||||
# "model": "gpt-4",
|
||||
"messages": messages,
|
||||
"temperature": temperature, # 1.0,
|
||||
"top_p": top_p, # 1.0,
|
||||
"n": 1,
|
||||
"stream": stream,
|
||||
"presence_penalty": 0,
|
||||
"frequency_penalty": 0,
|
||||
}
|
||||
|
||||
history.append(inputs)
|
||||
headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt, stream)
|
||||
history.append(inputs); history.append(" ")
|
||||
|
||||
retry = 0
|
||||
while True:
|
||||
try:
|
||||
# make a POST request to the API endpoint using the requests.post method, passing in stream=True
|
||||
# make a POST request to the API endpoint, stream=True
|
||||
response = requests.post(API_URL, headers=headers, proxies=proxies,
|
||||
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
|
||||
except:
|
||||
@ -164,37 +77,30 @@ def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt=''
|
||||
yield chatbot, history, "请求超时"+retry_msg
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
|
||||
token_counter = 0
|
||||
partial_words = ""
|
||||
|
||||
counter = 0
|
||||
gpt_replying_buffer = ""
|
||||
|
||||
is_head_of_the_stream = True
|
||||
if stream:
|
||||
stream_response = response.iter_lines()
|
||||
while True:
|
||||
chunk = next(stream_response)
|
||||
if chunk == b'data: [DONE]':
|
||||
break
|
||||
|
||||
if counter == 0:
|
||||
counter += 1
|
||||
continue
|
||||
counter += 1
|
||||
# check whether each line is non-empty
|
||||
# print(chunk.decode()[6:])
|
||||
if is_head_of_the_stream:
|
||||
is_head_of_the_stream = False; continue
|
||||
|
||||
if chunk:
|
||||
# decode each line as response data is in bytes
|
||||
try:
|
||||
if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
|
||||
logging.info(f'[response] {chatbot[-1][-1]}')
|
||||
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||
logging.info(f'[response] {gpt_replying_buffer}')
|
||||
break
|
||||
# 处理数据流的主体
|
||||
chunkjson = json.loads(chunk.decode()[6:])
|
||||
status_text = f"finish_reason: {chunkjson['choices'][0]['finish_reason']}"
|
||||
partial_words = partial_words + json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"]
|
||||
if token_counter == 0:
|
||||
history.append(" " + partial_words)
|
||||
else:
|
||||
history[-1] = partial_words
|
||||
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
|
||||
gpt_replying_buffer = gpt_replying_buffer + json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"]
|
||||
history[-1] = gpt_replying_buffer
|
||||
chatbot[-1] = (history[-2], history[-1])
|
||||
token_counter += 1
|
||||
yield chatbot, history, status_text
|
||||
|
||||
except Exception as e:
|
||||
@ -207,4 +113,48 @@ def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt=''
|
||||
yield chatbot, history, "Json解析不合常规,很可能是文本过长" + error_msg
|
||||
return
|
||||
|
||||
def generate_payload(inputs, top_p, temperature, history, system_prompt, stream):
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {API_KEY}"
|
||||
}
|
||||
|
||||
conversation_cnt = len(history) // 2
|
||||
|
||||
messages = [{"role": "system", "content": system_prompt}]
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2*conversation_cnt, 2):
|
||||
what_i_have_asked = {}
|
||||
what_i_have_asked["role"] = "user"
|
||||
what_i_have_asked["content"] = history[index]
|
||||
what_gpt_answer = {}
|
||||
what_gpt_answer["role"] = "assistant"
|
||||
what_gpt_answer["content"] = history[index+1]
|
||||
if what_i_have_asked["content"] != "":
|
||||
if what_gpt_answer["content"] == "": continue
|
||||
if what_gpt_answer["content"] == timeout_bot_msg: continue
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
else:
|
||||
messages[-1]['content'] = what_gpt_answer['content']
|
||||
|
||||
what_i_ask_now = {}
|
||||
what_i_ask_now["role"] = "user"
|
||||
what_i_ask_now["content"] = inputs
|
||||
messages.append(what_i_ask_now)
|
||||
|
||||
payload = {
|
||||
"model": LLM_MODEL,
|
||||
"messages": messages,
|
||||
"temperature": temperature, # 1.0,
|
||||
"top_p": top_p, # 1.0,
|
||||
"n": 1,
|
||||
"stream": stream,
|
||||
"presence_penalty": 0,
|
||||
"frequency_penalty": 0,
|
||||
}
|
||||
|
||||
print(f" {LLM_MODEL} : {conversation_cnt} : {inputs}")
|
||||
return headers,payload
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user