论文翻译只输出中文
This commit is contained in:
parent
760ff1840c
commit
471a369bb8
@ -47,7 +47,7 @@ def markdown_to_dict(article_content):
|
|||||||
|
|
||||||
|
|
||||||
@CatchException
|
@CatchException
|
||||||
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port, only_chinese=True):
|
||||||
|
|
||||||
disable_auto_promotion(chatbot)
|
disable_auto_promotion(chatbot)
|
||||||
# 基本信息:功能、贡献者
|
# 基本信息:功能、贡献者
|
||||||
@ -84,12 +84,12 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
return
|
return
|
||||||
|
|
||||||
# 开始正式执行任务
|
# 开始正式执行任务
|
||||||
yield from 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
yield from 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, only_chinese)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
def 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, only_chinese=True):
|
||||||
import copy
|
import copy
|
||||||
import tiktoken
|
import tiktoken
|
||||||
TOKEN_LIMIT_PER_FRAGMENT = 1280
|
TOKEN_LIMIT_PER_FRAGMENT = 1280
|
||||||
@ -100,7 +100,7 @@ def 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwa
|
|||||||
nougat_handle = nougat_interface()
|
nougat_handle = nougat_interface()
|
||||||
for index, fp in enumerate(file_manifest):
|
for index, fp in enumerate(file_manifest):
|
||||||
chatbot.append(["当前进度:", f"正在解析论文,请稍候。(第一次运行时,需要花费较长时间下载NOUGAT参数)"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
chatbot.append(["当前进度:", f"正在解析论文,请稍候。(第一次运行时,需要花费较长时间下载NOUGAT参数)"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
fpp = yield from nougat_handle.NOUGAT_parse_pdf(fp, chatbot, history)
|
fpp = nougat_handle.NOUGAT_parse_pdf(fp)
|
||||||
|
|
||||||
with open(fpp, 'r', encoding='utf8') as f:
|
with open(fpp, 'r', encoding='utf8') as f:
|
||||||
article_content = f.readlines()
|
article_content = f.readlines()
|
||||||
@ -170,19 +170,52 @@ def 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwa
|
|||||||
sys_prompt_array=[
|
sys_prompt_array=[
|
||||||
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
|
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
|
||||||
)
|
)
|
||||||
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=None, file_fullname=None)
|
if only_chinese:
|
||||||
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(fp)+'.md', chatbot=chatbot)
|
# 直接提取出翻译的内容,然后保存下去:
|
||||||
generated_conclusion_files.append(res_path)
|
chinese_list = []
|
||||||
|
# 记录当前的大章节标题:
|
||||||
|
last_section_name = ""
|
||||||
|
for index, value in enumerate(gpt_response_collection):
|
||||||
|
# 先挑选偶数序列号:
|
||||||
|
if index % 2 != 0:
|
||||||
|
# 先提取当前英文标题:
|
||||||
|
cur_section_name = gpt_response_collection[index-1].split('\n')[0].split(" Part")[0]
|
||||||
|
|
||||||
|
# 如果index是1的话,则直接使用first section name:
|
||||||
|
if cur_section_name != last_section_name:
|
||||||
|
cur_value = cur_section_name + '\n'
|
||||||
|
last_section_name = copy.deepcopy(cur_section_name)
|
||||||
|
else:
|
||||||
|
cur_value = ""
|
||||||
|
# 再判断翻译是否错误,如果错误,则直接贴原来的英文:
|
||||||
|
if "The OpenAI account associated" in value:
|
||||||
|
cur_value += gpt_response_collection[index-1]
|
||||||
|
else:
|
||||||
|
# 再做一个小修改:重新修改当前part的标题,默认用英文的
|
||||||
|
cur_value += value
|
||||||
|
|
||||||
|
chinese_list.append(cur_value)
|
||||||
|
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + chinese_list, file_basename=None, file_fullname=None)
|
||||||
|
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(fp)+'.md', chatbot=chatbot)
|
||||||
|
generated_conclusion_files.append(res_path)
|
||||||
|
else:
|
||||||
|
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=None, file_fullname=None)
|
||||||
|
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(fp)+'.md', chatbot=chatbot)
|
||||||
|
generated_conclusion_files.append(res_path)
|
||||||
|
|
||||||
ch = construct_html()
|
ch = construct_html()
|
||||||
orig = ""
|
orig = ""
|
||||||
trans = ""
|
trans = ""
|
||||||
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
|
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
|
||||||
|
# 叠加HTML文件
|
||||||
for i,k in enumerate(gpt_response_collection_html):
|
for i,k in enumerate(gpt_response_collection_html):
|
||||||
if i%2==0:
|
if i%2==0:
|
||||||
gpt_response_collection_html[i] = inputs_show_user_array[i//2]
|
gpt_response_collection_html[i] = inputs_show_user_array[i//2]
|
||||||
else:
|
else:
|
||||||
gpt_response_collection_html[i] = gpt_response_collection_html[i]
|
# 先提取当前英文标题:
|
||||||
|
cur_section_name = gpt_response_collection[i-1].split('\n')[0].split(" Part")[0]
|
||||||
|
cur_value = cur_section_name + "\n" + gpt_response_collection_html[i]
|
||||||
|
gpt_response_collection_html[i] = cur_value
|
||||||
|
|
||||||
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""]
|
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""]
|
||||||
final.extend(gpt_response_collection_html)
|
final.extend(gpt_response_collection_html)
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
from toolbox import CatchException, report_execption, get_log_folder
|
from toolbox import CatchException, report_execption, write_results_to_file
|
||||||
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
from toolbox import write_history_to_file, get_log_folder
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
from .crazy_utils import read_and_clean_pdf_text
|
from .crazy_utils import read_and_clean_pdf_text
|
||||||
@ -11,7 +11,7 @@ import os
|
|||||||
import math
|
import math
|
||||||
|
|
||||||
@CatchException
|
@CatchException
|
||||||
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port, only_chinese=True):
|
||||||
|
|
||||||
disable_auto_promotion(chatbot)
|
disable_auto_promotion(chatbot)
|
||||||
# 基本信息:功能、贡献者
|
# 基本信息:功能、贡献者
|
||||||
@ -51,15 +51,16 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
# 开始正式执行任务
|
# 开始正式执行任务
|
||||||
grobid_url = get_avail_grobid_url()
|
grobid_url = get_avail_grobid_url()
|
||||||
if grobid_url is not None:
|
if grobid_url is not None:
|
||||||
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
|
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url, only_chinese=only_chinese)
|
||||||
else:
|
else:
|
||||||
yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
|
yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
|
||||||
yield from 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
yield from 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||||
|
|
||||||
|
|
||||||
def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url):
|
def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url, only_chinese=True):
|
||||||
import copy
|
import copy
|
||||||
TOKEN_LIMIT_PER_FRAGMENT = 1280
|
import tiktoken
|
||||||
|
TOKEN_LIMIT_PER_FRAGMENT = 200
|
||||||
generated_conclusion_files = []
|
generated_conclusion_files = []
|
||||||
generated_html_files = []
|
generated_html_files = []
|
||||||
DST_LANG = "中文"
|
DST_LANG = "中文"
|
||||||
@ -131,9 +132,39 @@ def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwa
|
|||||||
sys_prompt_array=[
|
sys_prompt_array=[
|
||||||
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
|
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
|
||||||
)
|
)
|
||||||
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=None, file_fullname=None)
|
if only_chinese:
|
||||||
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(fp)+'.md', chatbot=chatbot)
|
# 直接提取出翻译的内容,然后保存下去:
|
||||||
generated_conclusion_files.append(res_path)
|
chinese_list = []
|
||||||
|
# 记录当前的大章节标题:
|
||||||
|
last_section_name = ""
|
||||||
|
for index, value in enumerate(gpt_response_collection):
|
||||||
|
# 先挑选偶数序列号:
|
||||||
|
if index % 2 != 0:
|
||||||
|
# 先提取当前英文标题:
|
||||||
|
cur_section_name = gpt_response_collection[index-1].split('\n')[0].split(" Part")[0]
|
||||||
|
|
||||||
|
# 如果index是1的话,则直接使用first section name:
|
||||||
|
if cur_section_name != last_section_name:
|
||||||
|
cur_value = cur_section_name + '\n'
|
||||||
|
last_section_name = copy.deepcopy(cur_section_name)
|
||||||
|
else:
|
||||||
|
cur_value = ""
|
||||||
|
# 再判断翻译是否错误,如果错误,则直接贴原来的英文:
|
||||||
|
if "The OpenAI account associated" in value:
|
||||||
|
cur_value += gpt_response_collection[index-1]
|
||||||
|
else:
|
||||||
|
# 再做一个小修改:重新修改当前part的标题,默认用英文的
|
||||||
|
cur_value += value
|
||||||
|
|
||||||
|
chinese_list.append(cur_value)
|
||||||
|
|
||||||
|
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + chinese_list, file_basename=None, file_fullname=None)
|
||||||
|
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(fp)+'.md', chatbot=chatbot)
|
||||||
|
generated_conclusion_files.append(res_path)
|
||||||
|
else:
|
||||||
|
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=None, file_fullname=None)
|
||||||
|
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(fp)+'.md', chatbot=chatbot)
|
||||||
|
generated_conclusion_files.append(res_path)
|
||||||
|
|
||||||
ch = construct_html()
|
ch = construct_html()
|
||||||
orig = ""
|
orig = ""
|
||||||
@ -143,7 +174,10 @@ def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwa
|
|||||||
if i%2==0:
|
if i%2==0:
|
||||||
gpt_response_collection_html[i] = inputs_show_user_array[i//2]
|
gpt_response_collection_html[i] = inputs_show_user_array[i//2]
|
||||||
else:
|
else:
|
||||||
gpt_response_collection_html[i] = gpt_response_collection_html[i]
|
# 先提取当前英文标题:
|
||||||
|
cur_section_name = gpt_response_collection[i-1].split('\n')[0].split(" Part")[0]
|
||||||
|
cur_value = cur_section_name + "\n" + gpt_response_collection_html[i]
|
||||||
|
gpt_response_collection_html[i] = cur_value
|
||||||
|
|
||||||
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""]
|
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""]
|
||||||
final.extend(gpt_response_collection_html)
|
final.extend(gpt_response_collection_html)
|
||||||
@ -164,7 +198,7 @@ def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwa
|
|||||||
|
|
||||||
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||||
import copy
|
import copy
|
||||||
TOKEN_LIMIT_PER_FRAGMENT = 1280
|
TOKEN_LIMIT_PER_FRAGMENT = 200
|
||||||
generated_conclusion_files = []
|
generated_conclusion_files = []
|
||||||
generated_html_files = []
|
generated_html_files = []
|
||||||
from crazy_functions.crazy_utils import construct_html
|
from crazy_functions.crazy_utils import construct_html
|
||||||
@ -176,20 +210,25 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
|
|
||||||
# 递归地切割PDF文件
|
# 递归地切割PDF文件
|
||||||
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
||||||
|
# from .crazy_utils import split_main_text
|
||||||
from request_llm.bridge_all import model_info
|
from request_llm.bridge_all import model_info
|
||||||
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||||
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
||||||
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
|
txt=file_content, get_token_fn=get_token_num, limit=256)
|
||||||
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
||||||
txt=page_one, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
|
txt=page_one, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
|
||||||
|
## 用我这个分段切分。
|
||||||
|
# paper_fragments = split_main_text(text=file_content, max_token=TOKEN_LIMIT_PER_FRAGMENT)
|
||||||
|
# page_one_fragments = split_main_text(text=page_one, max_token=TOKEN_LIMIT_PER_FRAGMENT)
|
||||||
|
|
||||||
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
|
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
|
||||||
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
# paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
||||||
|
paper_meta = page_one_fragments[:]
|
||||||
|
|
||||||
# 单线,获取文章meta信息
|
# 单线,获取文章meta信息
|
||||||
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}",
|
inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“作者单位”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分,不要提取Introduction部分的内容。请提取:{paper_meta}",
|
||||||
inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。",
|
inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。",
|
||||||
llm_kwargs=llm_kwargs,
|
llm_kwargs=llm_kwargs,
|
||||||
chatbot=chatbot, history=[],
|
chatbot=chatbot, history=[],
|
||||||
@ -205,24 +244,62 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
chatbot=chatbot,
|
chatbot=chatbot,
|
||||||
history_array=[[paper_meta] for _ in paper_fragments],
|
history_array=[[paper_meta] for _ in paper_fragments],
|
||||||
sys_prompt_array=[
|
sys_prompt_array=[
|
||||||
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in paper_fragments],
|
"请你作为一个学术翻译,负责把学术论文的部分章节文本,准确翻译成中文。注意:1. 文章中的每一句话都要翻译,并且消除输入文本前后的无意义乱码,2. 请自动识别小章节标题(小标题长度不要超过20个字符,也不要少于3个字符),并且用'### xxx'的markdown格式标记出来。" for _ in paper_fragments],
|
||||||
# max_workers=5 # OpenAI所允许的最大并行过载
|
# max_workers=5 # OpenAI所允许的最大并行过载
|
||||||
)
|
)
|
||||||
gpt_response_collection_md = copy.deepcopy(gpt_response_collection)
|
gpt_response_collection_md = copy.deepcopy(gpt_response_collection)
|
||||||
# 整理报告的格式
|
# 整理报告的格式
|
||||||
for i,k in enumerate(gpt_response_collection_md):
|
add_origin = True
|
||||||
if i%2==0:
|
for i, k in enumerate(gpt_response_collection_md):
|
||||||
gpt_response_collection_md[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection_md)//2}]: \n\n {paper_fragments[i//2].replace('#', '')} \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection_md)//2}]:\n "
|
if i % 2 ==0:
|
||||||
|
cur_trans = gpt_response_collection_md[i]
|
||||||
|
# 做个小小的处理,把翻译的结果中非常长的“#”去掉
|
||||||
|
temp_trans = ""
|
||||||
|
for line_text in cur_trans.split('\n'):
|
||||||
|
if len(line_text) == 0:
|
||||||
|
# print("空行")
|
||||||
|
temp_trans += "\n\n"
|
||||||
|
else:
|
||||||
|
if "#" in line_text[0]:
|
||||||
|
if len(line_text.split(' ')) > 12:
|
||||||
|
temp_trans += line_text.replace('#', '')
|
||||||
|
else:
|
||||||
|
temp_trans += line_text
|
||||||
|
temp_trans += "\n\n"
|
||||||
|
else:
|
||||||
|
temp_trans += line_text + "\n\n"
|
||||||
|
|
||||||
|
# gpt_response_collection_md[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection_md)//2}]: \n\n {paper_fragments[i//2].replace('#', '')} \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection_md)//2}]:\n "
|
||||||
|
if add_origin:
|
||||||
|
gpt_response_collection_md[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection_md)//2}]: \n\n {paper_fragments[i//2].replace('#', '')} \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection_md)//2}]:\n "
|
||||||
|
else:
|
||||||
|
gpt_response_collection_md[i] = ""
|
||||||
else:
|
else:
|
||||||
gpt_response_collection_md[i] = gpt_response_collection_md[i]
|
cur_trans = gpt_response_collection_md[i]
|
||||||
|
# 做个小小的处理,把翻译的结果中非常长的“#”去掉
|
||||||
|
temp_trans = ""
|
||||||
|
for line_text in cur_trans.split('\n'):
|
||||||
|
if len(line_text) == 0:
|
||||||
|
# print("空行")
|
||||||
|
temp_trans += "\n\n"
|
||||||
|
else:
|
||||||
|
if "#" in line_text[0]:
|
||||||
|
if len(line_text) > 12:
|
||||||
|
temp_trans += line_text.replace('#', '')
|
||||||
|
else:
|
||||||
|
temp_trans += line_text
|
||||||
|
temp_trans += "\n\n"
|
||||||
|
else:
|
||||||
|
temp_trans += line_text + "\n\n"
|
||||||
|
|
||||||
|
gpt_response_collection_md[i] = temp_trans
|
||||||
final = ["一、论文概况\n\n---\n\n", paper_meta_info.replace('# ', '### ') + '\n\n---\n\n', "二、论文翻译", ""]
|
final = ["一、论文概况\n\n---\n\n", paper_meta_info.replace('# ', '### ') + '\n\n---\n\n', "二、论文翻译", ""]
|
||||||
final.extend(gpt_response_collection_md)
|
final.extend(gpt_response_collection_md)
|
||||||
create_report_file_name = f"{os.path.basename(fp)}.trans.md"
|
create_report_file_name = f"{os.path.basename(fp)}.trans.md"
|
||||||
res = write_history_to_file(final, create_report_file_name)
|
res = write_results_to_file(final, file_name=create_report_file_name)
|
||||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
|
||||||
|
|
||||||
# 更新UI
|
# 更新UI
|
||||||
generated_conclusion_files.append(f'{get_log_folder()}/{create_report_file_name}')
|
generated_conclusion_files.append(f'./gpt_log/{create_report_file_name}')
|
||||||
chatbot.append((f"{fp}完成了吗?", res))
|
chatbot.append((f"{fp}完成了吗?", res))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user