Merge branch 'master' into frontier
This commit is contained in:
commit
5e647ff149
32
README.md
32
README.md
@ -101,9 +101,11 @@ cd gpt_academic
|
|||||||
|
|
||||||
2. 配置API_KEY
|
2. 配置API_KEY
|
||||||
|
|
||||||
在`config.py`中,配置API KEY等设置,[点击查看特殊网络环境设置方法](https://github.com/binary-husky/gpt_academic/issues/1) 。
|
在`config.py`中,配置API KEY等设置,[点击查看特殊网络环境设置方法](https://github.com/binary-husky/gpt_academic/issues/1) 。[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/%E9%A1%B9%E7%9B%AE%E9%85%8D%E7%BD%AE%E8%AF%B4%E6%98%8E)。
|
||||||
|
|
||||||
(P.S. 程序运行时会优先检查是否存在名为`config_private.py`的私密配置文件,并用其中的配置覆盖`config.py`的同名配置。因此,如果您能理解我们的配置读取逻辑,我们强烈建议您在`config.py`旁边创建一个名为`config_private.py`的新配置文件,并把`config.py`中的配置转移(复制)到`config_private.py`中(仅复制您修改过的配置条目即可)。`config_private.py`不受git管控,可以让您的隐私信息更加安全。P.S.项目同样支持通过`环境变量`配置大多数选项,环境变量的书写格式参考`docker-compose`文件。读取优先级: `环境变量` > `config_private.py` > `config.py`)
|
「 程序会优先检查是否存在名为`config_private.py`的私密配置文件,并用其中的配置覆盖`config.py`的同名配置。如您能理解该读取逻辑,我们强烈建议您在`config.py`旁边创建一个名为`config_private.py`的新配置文件,并把`config.py`中的配置转移(复制)到`config_private.py`中(仅复制您修改过的配置条目即可)。 」
|
||||||
|
|
||||||
|
「 支持通过`环境变量`配置项目,环境变量的书写格式参考`docker-compose.yml`文件或者我们的[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/%E9%A1%B9%E7%9B%AE%E9%85%8D%E7%BD%AE%E8%AF%B4%E6%98%8E)。配置读取优先级: `环境变量` > `config_private.py` > `config.py`。 」
|
||||||
|
|
||||||
|
|
||||||
3. 安装依赖
|
3. 安装依赖
|
||||||
@ -111,7 +113,7 @@ cd gpt_academic
|
|||||||
# (选择I: 如熟悉python)(python版本3.9以上,越新越好),备注:使用官方pip源或者阿里pip源,临时换源方法:python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
|
# (选择I: 如熟悉python)(python版本3.9以上,越新越好),备注:使用官方pip源或者阿里pip源,临时换源方法:python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
|
||||||
python -m pip install -r requirements.txt
|
python -m pip install -r requirements.txt
|
||||||
|
|
||||||
# (选择II: 如不熟悉python)使用anaconda,步骤也是类似的 (https://www.bilibili.com/video/BV1rc411W7Dr):
|
# (选择II: 使用Anaconda)步骤也是类似的 (https://www.bilibili.com/video/BV1rc411W7Dr):
|
||||||
conda create -n gptac_venv python=3.11 # 创建anaconda环境
|
conda create -n gptac_venv python=3.11 # 创建anaconda环境
|
||||||
conda activate gptac_venv # 激活anaconda环境
|
conda activate gptac_venv # 激活anaconda环境
|
||||||
python -m pip install -r requirements.txt # 这个步骤和pip安装一样的步骤
|
python -m pip install -r requirements.txt # 这个步骤和pip安装一样的步骤
|
||||||
@ -149,26 +151,25 @@ python main.py
|
|||||||
|
|
||||||
### 安装方法II:使用Docker
|
### 安装方法II:使用Docker
|
||||||
|
|
||||||
|
0. 部署项目的全部能力(这个是包含cuda和latex的大型镜像。如果您网速慢、硬盘小或没有显卡,则不推荐使用这个,建议使用方案1)(需要熟悉[Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian)运行时)
|
||||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
|
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
|
||||||
|
|
||||||
1. 仅ChatGPT(推荐大多数人选择,等价于docker-compose方案1)
|
``` sh
|
||||||
|
# 修改docker-compose.yml,保留方案0并删除其他方案。修改docker-compose.yml中方案0的配置,参考其中注释即可
|
||||||
|
docker-compose up
|
||||||
|
```
|
||||||
|
|
||||||
|
1. 仅ChatGPT+文心一言+spark等在线模型(推荐大多数人选择)
|
||||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml)
|
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml)
|
||||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml)
|
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml)
|
||||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
|
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
|
||||||
|
|
||||||
|
|
||||||
``` sh
|
``` sh
|
||||||
git clone --depth=1 https://github.com/binary-husky/gpt_academic.git # 下载项目
|
# 修改docker-compose.yml,保留方案1并删除其他方案。修改docker-compose.yml中方案1的配置,参考其中注释即可
|
||||||
cd gpt_academic # 进入路径
|
docker-compose up
|
||||||
nano config.py # 用任意文本编辑器编辑config.py, 配置 “Proxy”, “API_KEY” 以及 “WEB_PORT” (例如50923) 等
|
|
||||||
docker build -t gpt-academic . # 安装
|
|
||||||
|
|
||||||
#(最后一步-Linux操作系统)用`--net=host`更方便快捷
|
|
||||||
docker run --rm -it --net=host gpt-academic
|
|
||||||
#(最后一步-MacOS/Windows操作系统)只能用-p选项将容器上的端口(例如50923)暴露给主机上的端口
|
|
||||||
docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic
|
|
||||||
```
|
```
|
||||||
P.S. 如果需要依赖Latex的插件功能,请见Wiki。另外,您也可以直接使用docker-compose获取Latex功能(修改docker-compose.yml,保留方案4并删除其他方案)。
|
|
||||||
|
P.S. 如果需要依赖Latex的插件功能,请见Wiki。另外,您也可以直接使用方案4或者方案0获取Latex功能。
|
||||||
|
|
||||||
2. ChatGPT + ChatGLM2 + MOSS + LLAMA2 + 通义千问(需要熟悉[Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian)运行时)
|
2. ChatGPT + ChatGLM2 + MOSS + LLAMA2 + 通义千问(需要熟悉[Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian)运行时)
|
||||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml)
|
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml)
|
||||||
@ -309,6 +310,7 @@ Tip:不指定文件直接点击 `载入对话历史存档` 可以查看历史h
|
|||||||
|
|
||||||
### II:版本:
|
### II:版本:
|
||||||
- version 3.60(todo): 优化虚空终端,引入code interpreter和更多插件
|
- version 3.60(todo): 优化虚空终端,引入code interpreter和更多插件
|
||||||
|
- version 3.53: 支持动态选择不同界面主题,提高稳定性&解决多用户冲突问题
|
||||||
- version 3.50: 使用自然语言调用本项目的所有函数插件(虚空终端),支持插件分类,改进UI,设计新主题
|
- version 3.50: 使用自然语言调用本项目的所有函数插件(虚空终端),支持插件分类,改进UI,设计新主题
|
||||||
- version 3.49: 支持百度千帆平台和文心一言
|
- version 3.49: 支持百度千帆平台和文心一言
|
||||||
- version 3.48: 支持阿里达摩院通义千问,上海AI-Lab书生,讯飞星火
|
- version 3.48: 支持阿里达摩院通义千问,上海AI-Lab书生,讯飞星火
|
||||||
|
@ -1,6 +1,14 @@
|
|||||||
|
from functools import lru_cache
|
||||||
|
from toolbox import gen_time_str
|
||||||
|
from toolbox import promote_file_to_downloadzone
|
||||||
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
|
from colorful import *
|
||||||
import requests
|
import requests
|
||||||
import random
|
import random
|
||||||
from functools import lru_cache
|
import copy
|
||||||
|
import os
|
||||||
|
import math
|
||||||
|
|
||||||
class GROBID_OFFLINE_EXCEPTION(Exception): pass
|
class GROBID_OFFLINE_EXCEPTION(Exception): pass
|
||||||
|
|
||||||
def get_avail_grobid_url():
|
def get_avail_grobid_url():
|
||||||
@ -28,3 +36,133 @@ def parse_pdf(pdf_path, grobid_url):
|
|||||||
raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
|
raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
|
||||||
return article_dict
|
return article_dict
|
||||||
|
|
||||||
|
|
||||||
|
def produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files):
|
||||||
|
# -=-=-=-=-=-=-=-= 写出第1个文件:翻译前后混合 -=-=-=-=-=-=-=-=
|
||||||
|
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=f"{gen_time_str()}translated_and_original.md", file_fullname=None)
|
||||||
|
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(res_path)+'.md', chatbot=chatbot)
|
||||||
|
generated_conclusion_files.append(res_path)
|
||||||
|
|
||||||
|
# -=-=-=-=-=-=-=-= 写出第2个文件:仅翻译后的文本 -=-=-=-=-=-=-=-=
|
||||||
|
translated_res_array = []
|
||||||
|
# 记录当前的大章节标题:
|
||||||
|
last_section_name = ""
|
||||||
|
for index, value in enumerate(gpt_response_collection):
|
||||||
|
# 先挑选偶数序列号:
|
||||||
|
if index % 2 != 0:
|
||||||
|
# 先提取当前英文标题:
|
||||||
|
cur_section_name = gpt_response_collection[index-1].split('\n')[0].split(" Part")[0]
|
||||||
|
# 如果index是1的话,则直接使用first section name:
|
||||||
|
if cur_section_name != last_section_name:
|
||||||
|
cur_value = cur_section_name + '\n'
|
||||||
|
last_section_name = copy.deepcopy(cur_section_name)
|
||||||
|
else:
|
||||||
|
cur_value = ""
|
||||||
|
# 再做一个小修改:重新修改当前part的标题,默认用英文的
|
||||||
|
cur_value += value
|
||||||
|
translated_res_array.append(cur_value)
|
||||||
|
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + translated_res_array,
|
||||||
|
file_basename = f"{gen_time_str()}-translated_only.md",
|
||||||
|
file_fullname = None,
|
||||||
|
auto_caption = False)
|
||||||
|
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(res_path)+'.md', chatbot=chatbot)
|
||||||
|
generated_conclusion_files.append(res_path)
|
||||||
|
return res_path
|
||||||
|
|
||||||
|
def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG):
|
||||||
|
from crazy_functions.crazy_utils import construct_html
|
||||||
|
from crazy_functions.crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
||||||
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
|
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
|
|
||||||
|
prompt = "以下是一篇学术论文的基本信息:\n"
|
||||||
|
# title
|
||||||
|
title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
|
||||||
|
# authors
|
||||||
|
authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n'
|
||||||
|
# abstract
|
||||||
|
abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
|
||||||
|
# command
|
||||||
|
prompt += f"请将题目和摘要翻译为{DST_LANG}。"
|
||||||
|
meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ]
|
||||||
|
|
||||||
|
# 单线,获取文章meta信息
|
||||||
|
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
|
inputs=prompt,
|
||||||
|
inputs_show_user=prompt,
|
||||||
|
llm_kwargs=llm_kwargs,
|
||||||
|
chatbot=chatbot, history=[],
|
||||||
|
sys_prompt="You are an academic paper reader。",
|
||||||
|
)
|
||||||
|
|
||||||
|
# 多线,翻译
|
||||||
|
inputs_array = []
|
||||||
|
inputs_show_user_array = []
|
||||||
|
|
||||||
|
# get_token_num
|
||||||
|
from request_llm.bridge_all import model_info
|
||||||
|
enc = model_info[llm_kwargs['llm_model']]['tokenizer']
|
||||||
|
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||||
|
|
||||||
|
def break_down(txt):
|
||||||
|
raw_token_num = get_token_num(txt)
|
||||||
|
if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT:
|
||||||
|
return [txt]
|
||||||
|
else:
|
||||||
|
# raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
|
||||||
|
# find a smooth token limit to achieve even seperation
|
||||||
|
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
|
||||||
|
token_limit_smooth = raw_token_num // count + count
|
||||||
|
return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)
|
||||||
|
|
||||||
|
for section in article_dict.get('sections'):
|
||||||
|
if len(section['text']) == 0: continue
|
||||||
|
section_frags = break_down(section['text'])
|
||||||
|
for i, fragment in enumerate(section_frags):
|
||||||
|
heading = section['heading']
|
||||||
|
if len(section_frags) > 1: heading += f' Part-{i+1}'
|
||||||
|
inputs_array.append(
|
||||||
|
f"你需要翻译{heading}章节,内容如下: \n\n{fragment}"
|
||||||
|
)
|
||||||
|
inputs_show_user_array.append(
|
||||||
|
f"# {heading}\n\n{fragment}"
|
||||||
|
)
|
||||||
|
|
||||||
|
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||||
|
inputs_array=inputs_array,
|
||||||
|
inputs_show_user_array=inputs_show_user_array,
|
||||||
|
llm_kwargs=llm_kwargs,
|
||||||
|
chatbot=chatbot,
|
||||||
|
history_array=[meta for _ in inputs_array],
|
||||||
|
sys_prompt_array=[
|
||||||
|
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
|
||||||
|
)
|
||||||
|
# -=-=-=-=-=-=-=-= 写出Markdown文件 -=-=-=-=-=-=-=-=
|
||||||
|
produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files)
|
||||||
|
|
||||||
|
# -=-=-=-=-=-=-=-= 写出HTML文件 -=-=-=-=-=-=-=-=
|
||||||
|
ch = construct_html()
|
||||||
|
orig = ""
|
||||||
|
trans = ""
|
||||||
|
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
|
||||||
|
for i,k in enumerate(gpt_response_collection_html):
|
||||||
|
if i%2==0:
|
||||||
|
gpt_response_collection_html[i] = inputs_show_user_array[i//2]
|
||||||
|
else:
|
||||||
|
# 先提取当前英文标题:
|
||||||
|
cur_section_name = gpt_response_collection[i-1].split('\n')[0].split(" Part")[0]
|
||||||
|
cur_value = cur_section_name + "\n" + gpt_response_collection_html[i]
|
||||||
|
gpt_response_collection_html[i] = cur_value
|
||||||
|
|
||||||
|
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""]
|
||||||
|
final.extend(gpt_response_collection_html)
|
||||||
|
for i, k in enumerate(final):
|
||||||
|
if i%2==0:
|
||||||
|
orig = k
|
||||||
|
if i%2==1:
|
||||||
|
trans = k
|
||||||
|
ch.add_row(a=orig, b=trans)
|
||||||
|
create_report_file_name = f"{os.path.basename(fp)}.trans.html"
|
||||||
|
html_file = ch.save_file(create_report_file_name)
|
||||||
|
generated_conclusion_files.append(html_file)
|
||||||
|
promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot)
|
||||||
|
@ -1,11 +1,12 @@
|
|||||||
from toolbox import CatchException, report_execption, gen_time_str
|
from toolbox import CatchException, report_execption, get_log_folder, gen_time_str
|
||||||
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
||||||
from toolbox import write_history_to_file, get_log_folder
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
from .crazy_utils import read_and_clean_pdf_text
|
from .crazy_utils import read_and_clean_pdf_text
|
||||||
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url
|
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf
|
||||||
from colorful import *
|
from colorful import *
|
||||||
|
import copy
|
||||||
import os
|
import os
|
||||||
import math
|
import math
|
||||||
import logging
|
import logging
|
||||||
@ -92,7 +93,7 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
def 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
def 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||||
import copy
|
import copy
|
||||||
import tiktoken
|
import tiktoken
|
||||||
TOKEN_LIMIT_PER_FRAGMENT = 1280
|
TOKEN_LIMIT_PER_FRAGMENT = 1024
|
||||||
generated_conclusion_files = []
|
generated_conclusion_files = []
|
||||||
generated_html_files = []
|
generated_html_files = []
|
||||||
DST_LANG = "中文"
|
DST_LANG = "中文"
|
||||||
@ -106,96 +107,7 @@ def 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwa
|
|||||||
article_content = f.readlines()
|
article_content = f.readlines()
|
||||||
article_dict = markdown_to_dict(article_content)
|
article_dict = markdown_to_dict(article_content)
|
||||||
logging.info(article_dict)
|
logging.info(article_dict)
|
||||||
|
yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG)
|
||||||
prompt = "以下是一篇学术论文的基本信息:\n"
|
|
||||||
# title
|
|
||||||
title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
|
|
||||||
# authors
|
|
||||||
authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n'
|
|
||||||
# abstract
|
|
||||||
abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
|
|
||||||
# command
|
|
||||||
prompt += f"请将题目和摘要翻译为{DST_LANG}。"
|
|
||||||
meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ]
|
|
||||||
|
|
||||||
# 单线,获取文章meta信息
|
|
||||||
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
|
||||||
inputs=prompt,
|
|
||||||
inputs_show_user=prompt,
|
|
||||||
llm_kwargs=llm_kwargs,
|
|
||||||
chatbot=chatbot, history=[],
|
|
||||||
sys_prompt="You are an academic paper reader。",
|
|
||||||
)
|
|
||||||
|
|
||||||
# 多线,翻译
|
|
||||||
inputs_array = []
|
|
||||||
inputs_show_user_array = []
|
|
||||||
|
|
||||||
# get_token_num
|
|
||||||
from request_llm.bridge_all import model_info
|
|
||||||
enc = model_info[llm_kwargs['llm_model']]['tokenizer']
|
|
||||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
|
||||||
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
|
||||||
|
|
||||||
def break_down(txt):
|
|
||||||
raw_token_num = get_token_num(txt)
|
|
||||||
if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT:
|
|
||||||
return [txt]
|
|
||||||
else:
|
|
||||||
# raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
|
|
||||||
# find a smooth token limit to achieve even seperation
|
|
||||||
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
|
|
||||||
token_limit_smooth = raw_token_num // count + count
|
|
||||||
return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)
|
|
||||||
|
|
||||||
for section in article_dict.get('sections'):
|
|
||||||
if len(section['text']) == 0: continue
|
|
||||||
section_frags = break_down(section['text'])
|
|
||||||
for i, fragment in enumerate(section_frags):
|
|
||||||
heading = section['heading']
|
|
||||||
if len(section_frags) > 1: heading += f' Part-{i+1}'
|
|
||||||
inputs_array.append(
|
|
||||||
f"你需要翻译{heading}章节,内容如下: \n\n{fragment}"
|
|
||||||
)
|
|
||||||
inputs_show_user_array.append(
|
|
||||||
f"# {heading}\n\n{fragment}"
|
|
||||||
)
|
|
||||||
|
|
||||||
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
|
||||||
inputs_array=inputs_array,
|
|
||||||
inputs_show_user_array=inputs_show_user_array,
|
|
||||||
llm_kwargs=llm_kwargs,
|
|
||||||
chatbot=chatbot,
|
|
||||||
history_array=[meta for _ in inputs_array],
|
|
||||||
sys_prompt_array=[
|
|
||||||
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
|
|
||||||
)
|
|
||||||
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=None, file_fullname=None)
|
|
||||||
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(fp)+'.md', chatbot=chatbot)
|
|
||||||
generated_conclusion_files.append(res_path)
|
|
||||||
|
|
||||||
ch = construct_html()
|
|
||||||
orig = ""
|
|
||||||
trans = ""
|
|
||||||
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
|
|
||||||
for i,k in enumerate(gpt_response_collection_html):
|
|
||||||
if i%2==0:
|
|
||||||
gpt_response_collection_html[i] = inputs_show_user_array[i//2]
|
|
||||||
else:
|
|
||||||
gpt_response_collection_html[i] = gpt_response_collection_html[i]
|
|
||||||
|
|
||||||
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""]
|
|
||||||
final.extend(gpt_response_collection_html)
|
|
||||||
for i, k in enumerate(final):
|
|
||||||
if i%2==0:
|
|
||||||
orig = k
|
|
||||||
if i%2==1:
|
|
||||||
trans = k
|
|
||||||
ch.add_row(a=orig, b=trans)
|
|
||||||
create_report_file_name = f"{os.path.basename(fp)}.trans.html"
|
|
||||||
html_file = ch.save_file(create_report_file_name)
|
|
||||||
generated_html_files.append(html_file)
|
|
||||||
promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot)
|
|
||||||
|
|
||||||
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
|
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
@ -1,12 +1,12 @@
|
|||||||
from toolbox import CatchException, report_execption, get_log_folder
|
from toolbox import CatchException, report_execption, get_log_folder, gen_time_str
|
||||||
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
from .crazy_utils import read_and_clean_pdf_text
|
from .crazy_utils import read_and_clean_pdf_text
|
||||||
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url
|
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf
|
||||||
from colorful import *
|
from colorful import *
|
||||||
import glob
|
import copy
|
||||||
import os
|
import os
|
||||||
import math
|
import math
|
||||||
|
|
||||||
@ -58,8 +58,8 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
|
|
||||||
|
|
||||||
def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url):
|
def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url):
|
||||||
import copy
|
import copy, json
|
||||||
TOKEN_LIMIT_PER_FRAGMENT = 1280
|
TOKEN_LIMIT_PER_FRAGMENT = 1024
|
||||||
generated_conclusion_files = []
|
generated_conclusion_files = []
|
||||||
generated_html_files = []
|
generated_html_files = []
|
||||||
DST_LANG = "中文"
|
DST_LANG = "中文"
|
||||||
@ -67,104 +67,23 @@ def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwa
|
|||||||
for index, fp in enumerate(file_manifest):
|
for index, fp in enumerate(file_manifest):
|
||||||
chatbot.append(["当前进度:", f"正在连接GROBID服务,请稍候: {grobid_url}\n如果等待时间过长,请修改config中的GROBID_URL,可修改成本地GROBID服务。"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
chatbot.append(["当前进度:", f"正在连接GROBID服务,请稍候: {grobid_url}\n如果等待时间过长,请修改config中的GROBID_URL,可修改成本地GROBID服务。"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
article_dict = parse_pdf(fp, grobid_url)
|
article_dict = parse_pdf(fp, grobid_url)
|
||||||
|
grobid_json_res = os.path.join(get_log_folder(), gen_time_str() + "grobid.json")
|
||||||
|
with open(grobid_json_res, 'w+', encoding='utf8') as f:
|
||||||
|
f.write(json.dumps(article_dict, indent=4, ensure_ascii=False))
|
||||||
|
promote_file_to_downloadzone(grobid_json_res, chatbot=chatbot)
|
||||||
|
|
||||||
if article_dict is None: raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
|
if article_dict is None: raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
|
||||||
prompt = "以下是一篇学术论文的基本信息:\n"
|
yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG)
|
||||||
# title
|
|
||||||
title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
|
|
||||||
# authors
|
|
||||||
authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n'
|
|
||||||
# abstract
|
|
||||||
abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
|
|
||||||
# command
|
|
||||||
prompt += f"请将题目和摘要翻译为{DST_LANG}。"
|
|
||||||
meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ]
|
|
||||||
|
|
||||||
# 单线,获取文章meta信息
|
|
||||||
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
|
||||||
inputs=prompt,
|
|
||||||
inputs_show_user=prompt,
|
|
||||||
llm_kwargs=llm_kwargs,
|
|
||||||
chatbot=chatbot, history=[],
|
|
||||||
sys_prompt="You are an academic paper reader。",
|
|
||||||
)
|
|
||||||
|
|
||||||
# 多线,翻译
|
|
||||||
inputs_array = []
|
|
||||||
inputs_show_user_array = []
|
|
||||||
|
|
||||||
# get_token_num
|
|
||||||
from request_llm.bridge_all import model_info
|
|
||||||
enc = model_info[llm_kwargs['llm_model']]['tokenizer']
|
|
||||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
|
||||||
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
|
||||||
|
|
||||||
def break_down(txt):
|
|
||||||
raw_token_num = get_token_num(txt)
|
|
||||||
if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT:
|
|
||||||
return [txt]
|
|
||||||
else:
|
|
||||||
# raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
|
|
||||||
# find a smooth token limit to achieve even seperation
|
|
||||||
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
|
|
||||||
token_limit_smooth = raw_token_num // count + count
|
|
||||||
return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)
|
|
||||||
|
|
||||||
for section in article_dict.get('sections'):
|
|
||||||
if len(section['text']) == 0: continue
|
|
||||||
section_frags = break_down(section['text'])
|
|
||||||
for i, fragment in enumerate(section_frags):
|
|
||||||
heading = section['heading']
|
|
||||||
if len(section_frags) > 1: heading += f' Part-{i+1}'
|
|
||||||
inputs_array.append(
|
|
||||||
f"你需要翻译{heading}章节,内容如下: \n\n{fragment}"
|
|
||||||
)
|
|
||||||
inputs_show_user_array.append(
|
|
||||||
f"# {heading}\n\n{fragment}"
|
|
||||||
)
|
|
||||||
|
|
||||||
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
|
||||||
inputs_array=inputs_array,
|
|
||||||
inputs_show_user_array=inputs_show_user_array,
|
|
||||||
llm_kwargs=llm_kwargs,
|
|
||||||
chatbot=chatbot,
|
|
||||||
history_array=[meta for _ in inputs_array],
|
|
||||||
sys_prompt_array=[
|
|
||||||
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
|
|
||||||
)
|
|
||||||
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=None, file_fullname=None)
|
|
||||||
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(fp)+'.md', chatbot=chatbot)
|
|
||||||
generated_conclusion_files.append(res_path)
|
|
||||||
|
|
||||||
ch = construct_html()
|
|
||||||
orig = ""
|
|
||||||
trans = ""
|
|
||||||
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
|
|
||||||
for i,k in enumerate(gpt_response_collection_html):
|
|
||||||
if i%2==0:
|
|
||||||
gpt_response_collection_html[i] = inputs_show_user_array[i//2]
|
|
||||||
else:
|
|
||||||
gpt_response_collection_html[i] = gpt_response_collection_html[i]
|
|
||||||
|
|
||||||
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""]
|
|
||||||
final.extend(gpt_response_collection_html)
|
|
||||||
for i, k in enumerate(final):
|
|
||||||
if i%2==0:
|
|
||||||
orig = k
|
|
||||||
if i%2==1:
|
|
||||||
trans = k
|
|
||||||
ch.add_row(a=orig, b=trans)
|
|
||||||
create_report_file_name = f"{os.path.basename(fp)}.trans.html"
|
|
||||||
html_file = ch.save_file(create_report_file_name)
|
|
||||||
generated_html_files.append(html_file)
|
|
||||||
promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot)
|
|
||||||
|
|
||||||
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
|
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
|
|
||||||
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||||
|
"""
|
||||||
|
此函数已经弃用
|
||||||
|
"""
|
||||||
import copy
|
import copy
|
||||||
TOKEN_LIMIT_PER_FRAGMENT = 1280
|
TOKEN_LIMIT_PER_FRAGMENT = 1024
|
||||||
generated_conclusion_files = []
|
generated_conclusion_files = []
|
||||||
generated_html_files = []
|
generated_html_files = []
|
||||||
from crazy_functions.crazy_utils import construct_html
|
from crazy_functions.crazy_utils import construct_html
|
||||||
|
@ -1,5 +1,54 @@
|
|||||||
#【请修改完参数后,删除此行】请在以下方案中选择一种,然后删除其他的方案,最后docker-compose up运行 | Please choose from one of these options below, delete other options as well as This Line
|
#【请修改完参数后,删除此行】请在以下方案中选择一种,然后删除其他的方案,最后docker-compose up运行 | Please choose from one of these options below, delete other options as well as This Line
|
||||||
|
|
||||||
|
## ===================================================
|
||||||
|
## 【方案零】 部署项目的全部能力(这个是包含cuda和latex的大型镜像。如果您网速慢、硬盘小或没有显卡,则不推荐使用这个)
|
||||||
|
## ===================================================
|
||||||
|
version: '3'
|
||||||
|
services:
|
||||||
|
gpt_academic_full_capability:
|
||||||
|
image: ghcr.io/binary-husky/gpt_academic_with_all_capacity:master
|
||||||
|
environment:
|
||||||
|
# 请查阅 `config.py`或者 github wiki 以查看所有的配置信息
|
||||||
|
API_KEY: ' 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 '
|
||||||
|
# USE_PROXY: ' True '
|
||||||
|
# proxies: ' { "http": "http://localhost:10881", "https": "http://localhost:10881", } '
|
||||||
|
LLM_MODEL: ' gpt-3.5-turbo '
|
||||||
|
AVAIL_LLM_MODELS: ' ["gpt-3.5-turbo", "gpt-4", "qianfan", "sparkv2", "spark", "chatglm"] '
|
||||||
|
BAIDU_CLOUD_API_KEY : ' bTUtwEAveBrQipEowUvDwYWq '
|
||||||
|
BAIDU_CLOUD_SECRET_KEY : ' jqXtLvXiVw6UNdjliATTS61rllG8Iuni '
|
||||||
|
XFYUN_APPID: ' 53a8d816 '
|
||||||
|
XFYUN_API_SECRET: ' MjMxNDQ4NDE4MzM0OSNlNjQ2NTlhMTkx '
|
||||||
|
XFYUN_API_KEY: ' 95ccdec285364869d17b33e75ee96447 '
|
||||||
|
ENABLE_AUDIO: ' False '
|
||||||
|
DEFAULT_WORKER_NUM: ' 20 '
|
||||||
|
WEB_PORT: ' 12345 '
|
||||||
|
ADD_WAIFU: ' False '
|
||||||
|
ALIYUN_APPKEY: ' RxPlZrM88DnAFkZK '
|
||||||
|
THEME: ' Chuanhu-Small-and-Beautiful '
|
||||||
|
ALIYUN_ACCESSKEY: ' LTAI5t6BrFUzxRXVGUWnekh1 '
|
||||||
|
ALIYUN_SECRET: ' eHmI20SVWIwQZxCiTD2bGQVspP9i68 '
|
||||||
|
# LOCAL_MODEL_DEVICE: ' cuda '
|
||||||
|
|
||||||
|
# 加载英伟达显卡运行时
|
||||||
|
# runtime: nvidia
|
||||||
|
# deploy:
|
||||||
|
# resources:
|
||||||
|
# reservations:
|
||||||
|
# devices:
|
||||||
|
# - driver: nvidia
|
||||||
|
# count: 1
|
||||||
|
# capabilities: [gpu]
|
||||||
|
|
||||||
|
# 与宿主的网络融合
|
||||||
|
network_mode: "host"
|
||||||
|
|
||||||
|
# 不使用代理网络拉取最新代码
|
||||||
|
command: >
|
||||||
|
bash -c "python3 -u main.py"
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## ===================================================
|
## ===================================================
|
||||||
## 【方案一】 如果不需要运行本地模型(仅 chatgpt, azure, 星火, 千帆, claude 等在线大模型服务)
|
## 【方案一】 如果不需要运行本地模型(仅 chatgpt, azure, 星火, 千帆, claude 等在线大模型服务)
|
||||||
## ===================================================
|
## ===================================================
|
||||||
|
@ -19,3 +19,8 @@
|
|||||||
.wrap.svelte-xwlu1w {
|
.wrap.svelte-xwlu1w {
|
||||||
min-height: var(--size-32);
|
min-height: var(--size-32);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* status bar height */
|
||||||
|
.min.svelte-1yrv54 {
|
||||||
|
min-height: var(--size-12);
|
||||||
|
}
|
@ -216,7 +216,7 @@ def get_reduce_token_percent(text):
|
|||||||
return 0.5, '不详'
|
return 0.5, '不详'
|
||||||
|
|
||||||
|
|
||||||
def write_history_to_file(history, file_basename=None, file_fullname=None):
|
def write_history_to_file(history, file_basename=None, file_fullname=None, auto_caption=True):
|
||||||
"""
|
"""
|
||||||
将对话记录history以Markdown格式写入文件中。如果没有指定文件名,则使用当前时间生成文件名。
|
将对话记录history以Markdown格式写入文件中。如果没有指定文件名,则使用当前时间生成文件名。
|
||||||
"""
|
"""
|
||||||
@ -235,7 +235,7 @@ def write_history_to_file(history, file_basename=None, file_fullname=None):
|
|||||||
if type(content) != str: content = str(content)
|
if type(content) != str: content = str(content)
|
||||||
except:
|
except:
|
||||||
continue
|
continue
|
||||||
if i % 2 == 0:
|
if i % 2 == 0 and auto_caption:
|
||||||
f.write('## ')
|
f.write('## ')
|
||||||
try:
|
try:
|
||||||
f.write(content)
|
f.write(content)
|
||||||
|
4
version
4
version
@ -1,5 +1,5 @@
|
|||||||
{
|
{
|
||||||
"version": 3.52,
|
"version": 3.53,
|
||||||
"show_feature": true,
|
"show_feature": true,
|
||||||
"new_feature": "提高稳定性&解决多用户冲突问题 <-> 支持插件分类和更多UI皮肤外观 <-> 支持用户使用自然语言调度各个插件(虚空终端) ! <-> 改进UI,设计新主题 <-> 支持借助GROBID实现PDF高精度翻译 <-> 接入百度千帆平台和文心一言 <-> 接入阿里通义千问、讯飞星火、上海AI-Lab书生 <-> 优化一键升级 <-> 提高arxiv翻译速度和成功率"
|
"new_feature": "支持动态选择不同界面主题 <-> 提高稳定性&解决多用户冲突问题 <-> 支持插件分类和更多UI皮肤外观 <-> 支持用户使用自然语言调度各个插件(虚空终端) ! <-> 改进UI,设计新主题 <-> 支持借助GROBID实现PDF高精度翻译 <-> 接入百度千帆平台和文心一言 <-> 接入阿里通义千问、讯飞星火、上海AI-Lab书生 <-> 优化一键升级 <-> 提高arxiv翻译速度和成功率"
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user