Merge branch 'master' into frontier
This commit is contained in:
		
						commit
						5e647ff149
					
				
							
								
								
									
										32
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										32
									
								
								README.md
									
									
									
									
									
								
							@ -101,9 +101,11 @@ cd gpt_academic
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
2. 配置API_KEY
 | 
					2. 配置API_KEY
 | 
				
			||||||
 | 
					
 | 
				
			||||||
在`config.py`中,配置API KEY等设置,[点击查看特殊网络环境设置方法](https://github.com/binary-husky/gpt_academic/issues/1) 。
 | 
					在`config.py`中,配置API KEY等设置,[点击查看特殊网络环境设置方法](https://github.com/binary-husky/gpt_academic/issues/1) 。[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/%E9%A1%B9%E7%9B%AE%E9%85%8D%E7%BD%AE%E8%AF%B4%E6%98%8E)。
 | 
				
			||||||
 | 
					
 | 
				
			||||||
(P.S. 程序运行时会优先检查是否存在名为`config_private.py`的私密配置文件,并用其中的配置覆盖`config.py`的同名配置。因此,如果您能理解我们的配置读取逻辑,我们强烈建议您在`config.py`旁边创建一个名为`config_private.py`的新配置文件,并把`config.py`中的配置转移(复制)到`config_private.py`中(仅复制您修改过的配置条目即可)。`config_private.py`不受git管控,可以让您的隐私信息更加安全。P.S.项目同样支持通过`环境变量`配置大多数选项,环境变量的书写格式参考`docker-compose`文件。读取优先级: `环境变量` > `config_private.py` > `config.py`)
 | 
					「 程序会优先检查是否存在名为`config_private.py`的私密配置文件,并用其中的配置覆盖`config.py`的同名配置。如您能理解该读取逻辑,我们强烈建议您在`config.py`旁边创建一个名为`config_private.py`的新配置文件,并把`config.py`中的配置转移(复制)到`config_private.py`中(仅复制您修改过的配置条目即可)。 」
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					「 支持通过`环境变量`配置项目,环境变量的书写格式参考`docker-compose.yml`文件或者我们的[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/%E9%A1%B9%E7%9B%AE%E9%85%8D%E7%BD%AE%E8%AF%B4%E6%98%8E)。配置读取优先级: `环境变量` > `config_private.py` > `config.py`。 」
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
3. 安装依赖
 | 
					3. 安装依赖
 | 
				
			||||||
@ -111,7 +113,7 @@ cd gpt_academic
 | 
				
			|||||||
# (选择I: 如熟悉python)(python版本3.9以上,越新越好),备注:使用官方pip源或者阿里pip源,临时换源方法:python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
 | 
					# (选择I: 如熟悉python)(python版本3.9以上,越新越好),备注:使用官方pip源或者阿里pip源,临时换源方法:python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
 | 
				
			||||||
python -m pip install -r requirements.txt
 | 
					python -m pip install -r requirements.txt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# (选择II: 如不熟悉python)使用anaconda,步骤也是类似的 (https://www.bilibili.com/video/BV1rc411W7Dr):
 | 
					# (选择II: 使用Anaconda)步骤也是类似的 (https://www.bilibili.com/video/BV1rc411W7Dr):
 | 
				
			||||||
conda create -n gptac_venv python=3.11    # 创建anaconda环境
 | 
					conda create -n gptac_venv python=3.11    # 创建anaconda环境
 | 
				
			||||||
conda activate gptac_venv                 # 激活anaconda环境
 | 
					conda activate gptac_venv                 # 激活anaconda环境
 | 
				
			||||||
python -m pip install -r requirements.txt # 这个步骤和pip安装一样的步骤
 | 
					python -m pip install -r requirements.txt # 这个步骤和pip安装一样的步骤
 | 
				
			||||||
@ -149,26 +151,25 @@ python main.py
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
### 安装方法II:使用Docker
 | 
					### 安装方法II:使用Docker
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					0. 部署项目的全部能力(这个是包含cuda和latex的大型镜像。如果您网速慢、硬盘小或没有显卡,则不推荐使用这个,建议使用方案1)(需要熟悉[Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian)运行时)
 | 
				
			||||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
 | 
					[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
1. 仅ChatGPT(推荐大多数人选择,等价于docker-compose方案1)
 | 
					``` sh
 | 
				
			||||||
 | 
					# 修改docker-compose.yml,保留方案0并删除其他方案。修改docker-compose.yml中方案0的配置,参考其中注释即可
 | 
				
			||||||
 | 
					docker-compose up
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					1. 仅ChatGPT+文心一言+spark等在线模型(推荐大多数人选择)
 | 
				
			||||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml)
 | 
					[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml)
 | 
				
			||||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml)
 | 
					[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml)
 | 
				
			||||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
 | 
					[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
``` sh
 | 
					``` sh
 | 
				
			||||||
git clone --depth=1 https://github.com/binary-husky/gpt_academic.git  # 下载项目
 | 
					# 修改docker-compose.yml,保留方案1并删除其他方案。修改docker-compose.yml中方案1的配置,参考其中注释即可
 | 
				
			||||||
cd gpt_academic                                 # 进入路径
 | 
					docker-compose up
 | 
				
			||||||
nano config.py                                      # 用任意文本编辑器编辑config.py, 配置 “Proxy”, “API_KEY” 以及 “WEB_PORT” (例如50923) 等
 | 
					 | 
				
			||||||
docker build -t gpt-academic .                      # 安装
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#(最后一步-Linux操作系统)用`--net=host`更方便快捷
 | 
					 | 
				
			||||||
docker run --rm -it --net=host gpt-academic
 | 
					 | 
				
			||||||
#(最后一步-MacOS/Windows操作系统)只能用-p选项将容器上的端口(例如50923)暴露给主机上的端口
 | 
					 | 
				
			||||||
docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic
 | 
					 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
P.S. 如果需要依赖Latex的插件功能,请见Wiki。另外,您也可以直接使用docker-compose获取Latex功能(修改docker-compose.yml,保留方案4并删除其他方案)。
 | 
					
 | 
				
			||||||
 | 
					P.S. 如果需要依赖Latex的插件功能,请见Wiki。另外,您也可以直接使用方案4或者方案0获取Latex功能。
 | 
				
			||||||
 | 
					
 | 
				
			||||||
2. ChatGPT + ChatGLM2 + MOSS + LLAMA2 + 通义千问(需要熟悉[Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian)运行时)
 | 
					2. ChatGPT + ChatGLM2 + MOSS + LLAMA2 + 通义千问(需要熟悉[Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian)运行时)
 | 
				
			||||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml)
 | 
					[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml)
 | 
				
			||||||
@ -309,6 +310,7 @@ Tip:不指定文件直接点击 `载入对话历史存档` 可以查看历史h
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
### II:版本:
 | 
					### II:版本:
 | 
				
			||||||
- version 3.60(todo): 优化虚空终端,引入code interpreter和更多插件
 | 
					- version 3.60(todo): 优化虚空终端,引入code interpreter和更多插件
 | 
				
			||||||
 | 
					- version 3.53: 支持动态选择不同界面主题,提高稳定性&解决多用户冲突问题
 | 
				
			||||||
- version 3.50: 使用自然语言调用本项目的所有函数插件(虚空终端),支持插件分类,改进UI,设计新主题
 | 
					- version 3.50: 使用自然语言调用本项目的所有函数插件(虚空终端),支持插件分类,改进UI,设计新主题
 | 
				
			||||||
- version 3.49: 支持百度千帆平台和文心一言
 | 
					- version 3.49: 支持百度千帆平台和文心一言
 | 
				
			||||||
- version 3.48: 支持阿里达摩院通义千问,上海AI-Lab书生,讯飞星火
 | 
					- version 3.48: 支持阿里达摩院通义千问,上海AI-Lab书生,讯飞星火
 | 
				
			||||||
 | 
				
			|||||||
@ -1,6 +1,14 @@
 | 
				
			|||||||
 | 
					from functools import lru_cache
 | 
				
			||||||
 | 
					from toolbox import gen_time_str
 | 
				
			||||||
 | 
					from toolbox import promote_file_to_downloadzone
 | 
				
			||||||
 | 
					from toolbox import write_history_to_file, promote_file_to_downloadzone
 | 
				
			||||||
 | 
					from colorful import *
 | 
				
			||||||
import requests
 | 
					import requests
 | 
				
			||||||
import random
 | 
					import random
 | 
				
			||||||
from functools import lru_cache
 | 
					import copy
 | 
				
			||||||
 | 
					import os
 | 
				
			||||||
 | 
					import math
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class GROBID_OFFLINE_EXCEPTION(Exception): pass
 | 
					class GROBID_OFFLINE_EXCEPTION(Exception): pass
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def get_avail_grobid_url():
 | 
					def get_avail_grobid_url():
 | 
				
			||||||
@ -28,3 +36,133 @@ def parse_pdf(pdf_path, grobid_url):
 | 
				
			|||||||
        raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
 | 
					        raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
 | 
				
			||||||
    return article_dict
 | 
					    return article_dict
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files):
 | 
				
			||||||
 | 
					    # -=-=-=-=-=-=-=-= 写出第1个文件:翻译前后混合 -=-=-=-=-=-=-=-=
 | 
				
			||||||
 | 
					    res_path = write_history_to_file(meta +  ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=f"{gen_time_str()}translated_and_original.md", file_fullname=None)
 | 
				
			||||||
 | 
					    promote_file_to_downloadzone(res_path, rename_file=os.path.basename(res_path)+'.md', chatbot=chatbot)
 | 
				
			||||||
 | 
					    generated_conclusion_files.append(res_path)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # -=-=-=-=-=-=-=-= 写出第2个文件:仅翻译后的文本 -=-=-=-=-=-=-=-=
 | 
				
			||||||
 | 
					    translated_res_array = []
 | 
				
			||||||
 | 
					    # 记录当前的大章节标题:
 | 
				
			||||||
 | 
					    last_section_name = ""
 | 
				
			||||||
 | 
					    for index, value in enumerate(gpt_response_collection):
 | 
				
			||||||
 | 
					        # 先挑选偶数序列号:
 | 
				
			||||||
 | 
					        if index % 2 != 0:
 | 
				
			||||||
 | 
					            # 先提取当前英文标题:
 | 
				
			||||||
 | 
					            cur_section_name = gpt_response_collection[index-1].split('\n')[0].split(" Part")[0]
 | 
				
			||||||
 | 
					            # 如果index是1的话,则直接使用first section name:
 | 
				
			||||||
 | 
					            if cur_section_name != last_section_name:
 | 
				
			||||||
 | 
					                cur_value = cur_section_name + '\n'
 | 
				
			||||||
 | 
					                last_section_name = copy.deepcopy(cur_section_name)
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                cur_value = ""
 | 
				
			||||||
 | 
					            # 再做一个小修改:重新修改当前part的标题,默认用英文的
 | 
				
			||||||
 | 
					            cur_value += value
 | 
				
			||||||
 | 
					            translated_res_array.append(cur_value)
 | 
				
			||||||
 | 
					    res_path = write_history_to_file(meta +  ["# Meta Translation" , paper_meta_info] + translated_res_array, 
 | 
				
			||||||
 | 
					                                     file_basename = f"{gen_time_str()}-translated_only.md", 
 | 
				
			||||||
 | 
					                                     file_fullname = None,
 | 
				
			||||||
 | 
					                                     auto_caption = False)
 | 
				
			||||||
 | 
					    promote_file_to_downloadzone(res_path, rename_file=os.path.basename(res_path)+'.md', chatbot=chatbot)
 | 
				
			||||||
 | 
					    generated_conclusion_files.append(res_path)
 | 
				
			||||||
 | 
					    return res_path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG):
 | 
				
			||||||
 | 
					    from crazy_functions.crazy_utils import construct_html
 | 
				
			||||||
 | 
					    from crazy_functions.crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
 | 
				
			||||||
 | 
					    from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
 | 
				
			||||||
 | 
					    from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    prompt = "以下是一篇学术论文的基本信息:\n"
 | 
				
			||||||
 | 
					    # title
 | 
				
			||||||
 | 
					    title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
 | 
				
			||||||
 | 
					    # authors
 | 
				
			||||||
 | 
					    authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n'
 | 
				
			||||||
 | 
					    # abstract
 | 
				
			||||||
 | 
					    abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
 | 
				
			||||||
 | 
					    # command
 | 
				
			||||||
 | 
					    prompt += f"请将题目和摘要翻译为{DST_LANG}。"
 | 
				
			||||||
 | 
					    meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 单线,获取文章meta信息
 | 
				
			||||||
 | 
					    paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
 | 
				
			||||||
 | 
					        inputs=prompt,
 | 
				
			||||||
 | 
					        inputs_show_user=prompt,
 | 
				
			||||||
 | 
					        llm_kwargs=llm_kwargs,
 | 
				
			||||||
 | 
					        chatbot=chatbot, history=[],
 | 
				
			||||||
 | 
					        sys_prompt="You are an academic paper reader。",
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 多线,翻译
 | 
				
			||||||
 | 
					    inputs_array = []
 | 
				
			||||||
 | 
					    inputs_show_user_array = []
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # get_token_num
 | 
				
			||||||
 | 
					    from request_llm.bridge_all import model_info
 | 
				
			||||||
 | 
					    enc = model_info[llm_kwargs['llm_model']]['tokenizer']
 | 
				
			||||||
 | 
					    def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def break_down(txt):
 | 
				
			||||||
 | 
					        raw_token_num = get_token_num(txt)
 | 
				
			||||||
 | 
					        if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT:
 | 
				
			||||||
 | 
					            return [txt]
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            # raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
 | 
				
			||||||
 | 
					            # find a smooth token limit to achieve even seperation
 | 
				
			||||||
 | 
					            count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
 | 
				
			||||||
 | 
					            token_limit_smooth = raw_token_num // count + count
 | 
				
			||||||
 | 
					            return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for section in article_dict.get('sections'):
 | 
				
			||||||
 | 
					        if len(section['text']) == 0: continue
 | 
				
			||||||
 | 
					        section_frags = break_down(section['text'])
 | 
				
			||||||
 | 
					        for i, fragment in enumerate(section_frags):
 | 
				
			||||||
 | 
					            heading = section['heading']
 | 
				
			||||||
 | 
					            if len(section_frags) > 1: heading += f' Part-{i+1}'
 | 
				
			||||||
 | 
					            inputs_array.append(
 | 
				
			||||||
 | 
					                f"你需要翻译{heading}章节,内容如下: \n\n{fragment}"
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					            inputs_show_user_array.append(
 | 
				
			||||||
 | 
					                f"# {heading}\n\n{fragment}"
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
 | 
				
			||||||
 | 
					        inputs_array=inputs_array,
 | 
				
			||||||
 | 
					        inputs_show_user_array=inputs_show_user_array,
 | 
				
			||||||
 | 
					        llm_kwargs=llm_kwargs,
 | 
				
			||||||
 | 
					        chatbot=chatbot,
 | 
				
			||||||
 | 
					        history_array=[meta for _ in inputs_array],
 | 
				
			||||||
 | 
					        sys_prompt_array=[
 | 
				
			||||||
 | 
					            "请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    # -=-=-=-=-=-=-=-= 写出Markdown文件 -=-=-=-=-=-=-=-=
 | 
				
			||||||
 | 
					    produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # -=-=-=-=-=-=-=-= 写出HTML文件 -=-=-=-=-=-=-=-=
 | 
				
			||||||
 | 
					    ch = construct_html() 
 | 
				
			||||||
 | 
					    orig = ""
 | 
				
			||||||
 | 
					    trans = ""
 | 
				
			||||||
 | 
					    gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
 | 
				
			||||||
 | 
					    for i,k in enumerate(gpt_response_collection_html): 
 | 
				
			||||||
 | 
					        if i%2==0:
 | 
				
			||||||
 | 
					            gpt_response_collection_html[i] = inputs_show_user_array[i//2]
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            # 先提取当前英文标题:
 | 
				
			||||||
 | 
					            cur_section_name = gpt_response_collection[i-1].split('\n')[0].split(" Part")[0]
 | 
				
			||||||
 | 
					            cur_value = cur_section_name + "\n" + gpt_response_collection_html[i]
 | 
				
			||||||
 | 
					            gpt_response_collection_html[i] = cur_value
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    final = ["", "", "一、论文概况",  "", "Abstract", paper_meta_info,  "二、论文翻译",  ""]
 | 
				
			||||||
 | 
					    final.extend(gpt_response_collection_html)
 | 
				
			||||||
 | 
					    for i, k in enumerate(final): 
 | 
				
			||||||
 | 
					        if i%2==0:
 | 
				
			||||||
 | 
					            orig = k
 | 
				
			||||||
 | 
					        if i%2==1:
 | 
				
			||||||
 | 
					            trans = k
 | 
				
			||||||
 | 
					            ch.add_row(a=orig, b=trans)
 | 
				
			||||||
 | 
					    create_report_file_name = f"{os.path.basename(fp)}.trans.html"
 | 
				
			||||||
 | 
					    html_file = ch.save_file(create_report_file_name)
 | 
				
			||||||
 | 
					    generated_conclusion_files.append(html_file)
 | 
				
			||||||
 | 
					    promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot)
 | 
				
			||||||
 | 
				
			|||||||
@ -1,11 +1,12 @@
 | 
				
			|||||||
from toolbox import CatchException, report_execption, gen_time_str
 | 
					from toolbox import CatchException, report_execption, get_log_folder, gen_time_str
 | 
				
			||||||
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
 | 
					from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
 | 
				
			||||||
from toolbox import write_history_to_file, get_log_folder
 | 
					from toolbox import write_history_to_file, promote_file_to_downloadzone
 | 
				
			||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
 | 
					from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
 | 
				
			||||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
 | 
					from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
 | 
				
			||||||
from .crazy_utils import read_and_clean_pdf_text
 | 
					from .crazy_utils import read_and_clean_pdf_text
 | 
				
			||||||
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url
 | 
					from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf
 | 
				
			||||||
from colorful import *
 | 
					from colorful import *
 | 
				
			||||||
 | 
					import copy
 | 
				
			||||||
import os
 | 
					import os
 | 
				
			||||||
import math
 | 
					import math
 | 
				
			||||||
import logging
 | 
					import logging
 | 
				
			||||||
@ -92,7 +93,7 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
 | 
				
			|||||||
def 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
 | 
					def 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
 | 
				
			||||||
    import copy
 | 
					    import copy
 | 
				
			||||||
    import tiktoken
 | 
					    import tiktoken
 | 
				
			||||||
    TOKEN_LIMIT_PER_FRAGMENT = 1280
 | 
					    TOKEN_LIMIT_PER_FRAGMENT = 1024
 | 
				
			||||||
    generated_conclusion_files = []
 | 
					    generated_conclusion_files = []
 | 
				
			||||||
    generated_html_files = []
 | 
					    generated_html_files = []
 | 
				
			||||||
    DST_LANG = "中文"
 | 
					    DST_LANG = "中文"
 | 
				
			||||||
@ -106,96 +107,7 @@ def 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwa
 | 
				
			|||||||
            article_content = f.readlines()
 | 
					            article_content = f.readlines()
 | 
				
			||||||
        article_dict = markdown_to_dict(article_content)
 | 
					        article_dict = markdown_to_dict(article_content)
 | 
				
			||||||
        logging.info(article_dict)
 | 
					        logging.info(article_dict)
 | 
				
			||||||
 | 
					        yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG)
 | 
				
			||||||
        prompt = "以下是一篇学术论文的基本信息:\n"
 | 
					 | 
				
			||||||
        # title
 | 
					 | 
				
			||||||
        title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
 | 
					 | 
				
			||||||
        # authors
 | 
					 | 
				
			||||||
        authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n'
 | 
					 | 
				
			||||||
        # abstract
 | 
					 | 
				
			||||||
        abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
 | 
					 | 
				
			||||||
        # command
 | 
					 | 
				
			||||||
        prompt += f"请将题目和摘要翻译为{DST_LANG}。"
 | 
					 | 
				
			||||||
        meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # 单线,获取文章meta信息
 | 
					 | 
				
			||||||
        paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
 | 
					 | 
				
			||||||
            inputs=prompt,
 | 
					 | 
				
			||||||
            inputs_show_user=prompt,
 | 
					 | 
				
			||||||
            llm_kwargs=llm_kwargs,
 | 
					 | 
				
			||||||
            chatbot=chatbot, history=[],
 | 
					 | 
				
			||||||
            sys_prompt="You are an academic paper reader。",
 | 
					 | 
				
			||||||
        )
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # 多线,翻译
 | 
					 | 
				
			||||||
        inputs_array = []
 | 
					 | 
				
			||||||
        inputs_show_user_array = []
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # get_token_num
 | 
					 | 
				
			||||||
        from request_llm.bridge_all import model_info
 | 
					 | 
				
			||||||
        enc = model_info[llm_kwargs['llm_model']]['tokenizer']
 | 
					 | 
				
			||||||
        def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
 | 
					 | 
				
			||||||
        from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        def break_down(txt):
 | 
					 | 
				
			||||||
            raw_token_num = get_token_num(txt)
 | 
					 | 
				
			||||||
            if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT:
 | 
					 | 
				
			||||||
                return [txt]
 | 
					 | 
				
			||||||
            else:
 | 
					 | 
				
			||||||
                # raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
 | 
					 | 
				
			||||||
                # find a smooth token limit to achieve even seperation
 | 
					 | 
				
			||||||
                count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
 | 
					 | 
				
			||||||
                token_limit_smooth = raw_token_num // count + count
 | 
					 | 
				
			||||||
                return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        for section in article_dict.get('sections'):
 | 
					 | 
				
			||||||
            if len(section['text']) == 0: continue
 | 
					 | 
				
			||||||
            section_frags = break_down(section['text'])
 | 
					 | 
				
			||||||
            for i, fragment in enumerate(section_frags):
 | 
					 | 
				
			||||||
                heading = section['heading']
 | 
					 | 
				
			||||||
                if len(section_frags) > 1: heading += f' Part-{i+1}'
 | 
					 | 
				
			||||||
                inputs_array.append(
 | 
					 | 
				
			||||||
                    f"你需要翻译{heading}章节,内容如下: \n\n{fragment}"
 | 
					 | 
				
			||||||
                )
 | 
					 | 
				
			||||||
                inputs_show_user_array.append(
 | 
					 | 
				
			||||||
                    f"# {heading}\n\n{fragment}"
 | 
					 | 
				
			||||||
                )
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
 | 
					 | 
				
			||||||
            inputs_array=inputs_array,
 | 
					 | 
				
			||||||
            inputs_show_user_array=inputs_show_user_array,
 | 
					 | 
				
			||||||
            llm_kwargs=llm_kwargs,
 | 
					 | 
				
			||||||
            chatbot=chatbot,
 | 
					 | 
				
			||||||
            history_array=[meta for _ in inputs_array],
 | 
					 | 
				
			||||||
            sys_prompt_array=[
 | 
					 | 
				
			||||||
                "请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
 | 
					 | 
				
			||||||
        )
 | 
					 | 
				
			||||||
        res_path = write_history_to_file(meta +  ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=None, file_fullname=None)
 | 
					 | 
				
			||||||
        promote_file_to_downloadzone(res_path, rename_file=os.path.basename(fp)+'.md', chatbot=chatbot)
 | 
					 | 
				
			||||||
        generated_conclusion_files.append(res_path)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        ch = construct_html() 
 | 
					 | 
				
			||||||
        orig = ""
 | 
					 | 
				
			||||||
        trans = ""
 | 
					 | 
				
			||||||
        gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
 | 
					 | 
				
			||||||
        for i,k in enumerate(gpt_response_collection_html): 
 | 
					 | 
				
			||||||
            if i%2==0:
 | 
					 | 
				
			||||||
                gpt_response_collection_html[i] = inputs_show_user_array[i//2]
 | 
					 | 
				
			||||||
            else:
 | 
					 | 
				
			||||||
                gpt_response_collection_html[i] = gpt_response_collection_html[i]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        final = ["", "", "一、论文概况",  "", "Abstract", paper_meta_info,  "二、论文翻译",  ""]
 | 
					 | 
				
			||||||
        final.extend(gpt_response_collection_html)
 | 
					 | 
				
			||||||
        for i, k in enumerate(final): 
 | 
					 | 
				
			||||||
            if i%2==0:
 | 
					 | 
				
			||||||
                orig = k
 | 
					 | 
				
			||||||
            if i%2==1:
 | 
					 | 
				
			||||||
                trans = k
 | 
					 | 
				
			||||||
                ch.add_row(a=orig, b=trans)
 | 
					 | 
				
			||||||
        create_report_file_name = f"{os.path.basename(fp)}.trans.html"
 | 
					 | 
				
			||||||
        html_file = ch.save_file(create_report_file_name)
 | 
					 | 
				
			||||||
        generated_html_files.append(html_file)
 | 
					 | 
				
			||||||
        promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot)
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
 | 
					    chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
 | 
				
			||||||
    yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
 | 
					    yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
 | 
				
			||||||
 | 
				
			|||||||
@ -1,12 +1,12 @@
 | 
				
			|||||||
from toolbox import CatchException, report_execption, get_log_folder
 | 
					from toolbox import CatchException, report_execption, get_log_folder, gen_time_str
 | 
				
			||||||
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
 | 
					from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
 | 
				
			||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
 | 
					from toolbox import write_history_to_file, promote_file_to_downloadzone
 | 
				
			||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
 | 
					from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
 | 
				
			||||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
 | 
					from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
 | 
				
			||||||
from .crazy_utils import read_and_clean_pdf_text
 | 
					from .crazy_utils import read_and_clean_pdf_text
 | 
				
			||||||
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url
 | 
					from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf
 | 
				
			||||||
from colorful import *
 | 
					from colorful import *
 | 
				
			||||||
import glob
 | 
					import copy
 | 
				
			||||||
import os
 | 
					import os
 | 
				
			||||||
import math
 | 
					import math
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -58,8 +58,8 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url):
 | 
					def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url):
 | 
				
			||||||
    import copy
 | 
					    import copy, json
 | 
				
			||||||
    TOKEN_LIMIT_PER_FRAGMENT = 1280
 | 
					    TOKEN_LIMIT_PER_FRAGMENT = 1024
 | 
				
			||||||
    generated_conclusion_files = []
 | 
					    generated_conclusion_files = []
 | 
				
			||||||
    generated_html_files = []
 | 
					    generated_html_files = []
 | 
				
			||||||
    DST_LANG = "中文"
 | 
					    DST_LANG = "中文"
 | 
				
			||||||
@ -67,104 +67,23 @@ def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwa
 | 
				
			|||||||
    for index, fp in enumerate(file_manifest):
 | 
					    for index, fp in enumerate(file_manifest):
 | 
				
			||||||
        chatbot.append(["当前进度:", f"正在连接GROBID服务,请稍候: {grobid_url}\n如果等待时间过长,请修改config中的GROBID_URL,可修改成本地GROBID服务。"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
 | 
					        chatbot.append(["当前进度:", f"正在连接GROBID服务,请稍候: {grobid_url}\n如果等待时间过长,请修改config中的GROBID_URL,可修改成本地GROBID服务。"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
 | 
				
			||||||
        article_dict = parse_pdf(fp, grobid_url)
 | 
					        article_dict = parse_pdf(fp, grobid_url)
 | 
				
			||||||
 | 
					        grobid_json_res = os.path.join(get_log_folder(), gen_time_str() + "grobid.json")
 | 
				
			||||||
 | 
					        with open(grobid_json_res, 'w+', encoding='utf8') as f:
 | 
				
			||||||
 | 
					            f.write(json.dumps(article_dict, indent=4, ensure_ascii=False))
 | 
				
			||||||
 | 
					        promote_file_to_downloadzone(grobid_json_res, chatbot=chatbot)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
        if article_dict is None: raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
 | 
					        if article_dict is None: raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
 | 
				
			||||||
        prompt = "以下是一篇学术论文的基本信息:\n"
 | 
					        yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG)
 | 
				
			||||||
        # title
 | 
					 | 
				
			||||||
        title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
 | 
					 | 
				
			||||||
        # authors
 | 
					 | 
				
			||||||
        authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n'
 | 
					 | 
				
			||||||
        # abstract
 | 
					 | 
				
			||||||
        abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
 | 
					 | 
				
			||||||
        # command
 | 
					 | 
				
			||||||
        prompt += f"请将题目和摘要翻译为{DST_LANG}。"
 | 
					 | 
				
			||||||
        meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # 单线,获取文章meta信息
 | 
					 | 
				
			||||||
        paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
 | 
					 | 
				
			||||||
            inputs=prompt,
 | 
					 | 
				
			||||||
            inputs_show_user=prompt,
 | 
					 | 
				
			||||||
            llm_kwargs=llm_kwargs,
 | 
					 | 
				
			||||||
            chatbot=chatbot, history=[],
 | 
					 | 
				
			||||||
            sys_prompt="You are an academic paper reader。",
 | 
					 | 
				
			||||||
        )
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # 多线,翻译
 | 
					 | 
				
			||||||
        inputs_array = []
 | 
					 | 
				
			||||||
        inputs_show_user_array = []
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # get_token_num
 | 
					 | 
				
			||||||
        from request_llm.bridge_all import model_info
 | 
					 | 
				
			||||||
        enc = model_info[llm_kwargs['llm_model']]['tokenizer']
 | 
					 | 
				
			||||||
        def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
 | 
					 | 
				
			||||||
        from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        def break_down(txt):
 | 
					 | 
				
			||||||
            raw_token_num = get_token_num(txt)
 | 
					 | 
				
			||||||
            if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT:
 | 
					 | 
				
			||||||
                return [txt]
 | 
					 | 
				
			||||||
            else:
 | 
					 | 
				
			||||||
                # raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
 | 
					 | 
				
			||||||
                # find a smooth token limit to achieve even seperation
 | 
					 | 
				
			||||||
                count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
 | 
					 | 
				
			||||||
                token_limit_smooth = raw_token_num // count + count
 | 
					 | 
				
			||||||
                return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        for section in article_dict.get('sections'):
 | 
					 | 
				
			||||||
            if len(section['text']) == 0: continue
 | 
					 | 
				
			||||||
            section_frags = break_down(section['text'])
 | 
					 | 
				
			||||||
            for i, fragment in enumerate(section_frags):
 | 
					 | 
				
			||||||
                heading = section['heading']
 | 
					 | 
				
			||||||
                if len(section_frags) > 1: heading += f' Part-{i+1}'
 | 
					 | 
				
			||||||
                inputs_array.append(
 | 
					 | 
				
			||||||
                    f"你需要翻译{heading}章节,内容如下: \n\n{fragment}"
 | 
					 | 
				
			||||||
                )
 | 
					 | 
				
			||||||
                inputs_show_user_array.append(
 | 
					 | 
				
			||||||
                    f"# {heading}\n\n{fragment}"
 | 
					 | 
				
			||||||
                )
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
 | 
					 | 
				
			||||||
            inputs_array=inputs_array,
 | 
					 | 
				
			||||||
            inputs_show_user_array=inputs_show_user_array,
 | 
					 | 
				
			||||||
            llm_kwargs=llm_kwargs,
 | 
					 | 
				
			||||||
            chatbot=chatbot,
 | 
					 | 
				
			||||||
            history_array=[meta for _ in inputs_array],
 | 
					 | 
				
			||||||
            sys_prompt_array=[
 | 
					 | 
				
			||||||
                "请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
 | 
					 | 
				
			||||||
        )
 | 
					 | 
				
			||||||
        res_path = write_history_to_file(meta +  ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=None, file_fullname=None)
 | 
					 | 
				
			||||||
        promote_file_to_downloadzone(res_path, rename_file=os.path.basename(fp)+'.md', chatbot=chatbot)
 | 
					 | 
				
			||||||
        generated_conclusion_files.append(res_path)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        ch = construct_html() 
 | 
					 | 
				
			||||||
        orig = ""
 | 
					 | 
				
			||||||
        trans = ""
 | 
					 | 
				
			||||||
        gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
 | 
					 | 
				
			||||||
        for i,k in enumerate(gpt_response_collection_html): 
 | 
					 | 
				
			||||||
            if i%2==0:
 | 
					 | 
				
			||||||
                gpt_response_collection_html[i] = inputs_show_user_array[i//2]
 | 
					 | 
				
			||||||
            else:
 | 
					 | 
				
			||||||
                gpt_response_collection_html[i] = gpt_response_collection_html[i]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        final = ["", "", "一、论文概况",  "", "Abstract", paper_meta_info,  "二、论文翻译",  ""]
 | 
					 | 
				
			||||||
        final.extend(gpt_response_collection_html)
 | 
					 | 
				
			||||||
        for i, k in enumerate(final): 
 | 
					 | 
				
			||||||
            if i%2==0:
 | 
					 | 
				
			||||||
                orig = k
 | 
					 | 
				
			||||||
            if i%2==1:
 | 
					 | 
				
			||||||
                trans = k
 | 
					 | 
				
			||||||
                ch.add_row(a=orig, b=trans)
 | 
					 | 
				
			||||||
        create_report_file_name = f"{os.path.basename(fp)}.trans.html"
 | 
					 | 
				
			||||||
        html_file = ch.save_file(create_report_file_name)
 | 
					 | 
				
			||||||
        generated_html_files.append(html_file)
 | 
					 | 
				
			||||||
        promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
 | 
					    chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
 | 
				
			||||||
    yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
 | 
					    yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
 | 
					def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    此函数已经弃用
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
    import copy
 | 
					    import copy
 | 
				
			||||||
    TOKEN_LIMIT_PER_FRAGMENT = 1280
 | 
					    TOKEN_LIMIT_PER_FRAGMENT = 1024
 | 
				
			||||||
    generated_conclusion_files = []
 | 
					    generated_conclusion_files = []
 | 
				
			||||||
    generated_html_files = []
 | 
					    generated_html_files = []
 | 
				
			||||||
    from crazy_functions.crazy_utils import construct_html
 | 
					    from crazy_functions.crazy_utils import construct_html
 | 
				
			||||||
 | 
				
			|||||||
@ -1,5 +1,54 @@
 | 
				
			|||||||
#【请修改完参数后,删除此行】请在以下方案中选择一种,然后删除其他的方案,最后docker-compose up运行 | Please choose from one of these options below, delete other options as well as This Line
 | 
					#【请修改完参数后,删除此行】请在以下方案中选择一种,然后删除其他的方案,最后docker-compose up运行 | Please choose from one of these options below, delete other options as well as This Line
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## ===================================================
 | 
				
			||||||
 | 
					## 【方案零】 部署项目的全部能力(这个是包含cuda和latex的大型镜像。如果您网速慢、硬盘小或没有显卡,则不推荐使用这个)
 | 
				
			||||||
 | 
					## ===================================================
 | 
				
			||||||
 | 
					version: '3'
 | 
				
			||||||
 | 
					services:
 | 
				
			||||||
 | 
					  gpt_academic_full_capability:
 | 
				
			||||||
 | 
					    image: ghcr.io/binary-husky/gpt_academic_with_all_capacity:master
 | 
				
			||||||
 | 
					    environment:
 | 
				
			||||||
 | 
					    # 请查阅 `config.py`或者 github wiki 以查看所有的配置信息
 | 
				
			||||||
 | 
					      API_KEY:                  '  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                        '
 | 
				
			||||||
 | 
					    # USE_PROXY:                '  True                                                                       '
 | 
				
			||||||
 | 
					    # proxies:                  '  { "http": "http://localhost:10881", "https": "http://localhost:10881", }   '
 | 
				
			||||||
 | 
					      LLM_MODEL:                '  gpt-3.5-turbo                                                              '
 | 
				
			||||||
 | 
					      AVAIL_LLM_MODELS:         '  ["gpt-3.5-turbo", "gpt-4", "qianfan", "sparkv2", "spark", "chatglm"]       '
 | 
				
			||||||
 | 
					      BAIDU_CLOUD_API_KEY :     '  bTUtwEAveBrQipEowUvDwYWq                                                   '
 | 
				
			||||||
 | 
					      BAIDU_CLOUD_SECRET_KEY :  '  jqXtLvXiVw6UNdjliATTS61rllG8Iuni                                           '
 | 
				
			||||||
 | 
					      XFYUN_APPID:              '  53a8d816                                                                   '
 | 
				
			||||||
 | 
					      XFYUN_API_SECRET:         '  MjMxNDQ4NDE4MzM0OSNlNjQ2NTlhMTkx                                           '
 | 
				
			||||||
 | 
					      XFYUN_API_KEY:            '  95ccdec285364869d17b33e75ee96447                                           '
 | 
				
			||||||
 | 
					      ENABLE_AUDIO:             '  False                                                                      '
 | 
				
			||||||
 | 
					      DEFAULT_WORKER_NUM:       '  20                                                                         '
 | 
				
			||||||
 | 
					      WEB_PORT:                 '  12345                                                                      '
 | 
				
			||||||
 | 
					      ADD_WAIFU:                '  False                                                                      '
 | 
				
			||||||
 | 
					      ALIYUN_APPKEY:            '  RxPlZrM88DnAFkZK                                                           '
 | 
				
			||||||
 | 
					      THEME:                    '  Chuanhu-Small-and-Beautiful                                                '
 | 
				
			||||||
 | 
					      ALIYUN_ACCESSKEY:         '  LTAI5t6BrFUzxRXVGUWnekh1                                                   '
 | 
				
			||||||
 | 
					      ALIYUN_SECRET:            '  eHmI20SVWIwQZxCiTD2bGQVspP9i68                                             '
 | 
				
			||||||
 | 
					    # LOCAL_MODEL_DEVICE:       '  cuda                                                                       '
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 加载英伟达显卡运行时
 | 
				
			||||||
 | 
					    # runtime: nvidia
 | 
				
			||||||
 | 
					    # deploy:
 | 
				
			||||||
 | 
					    #     resources:
 | 
				
			||||||
 | 
					    #       reservations:
 | 
				
			||||||
 | 
					    #         devices:
 | 
				
			||||||
 | 
					    #           - driver: nvidia
 | 
				
			||||||
 | 
					    #             count: 1
 | 
				
			||||||
 | 
					    #             capabilities: [gpu]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 与宿主的网络融合
 | 
				
			||||||
 | 
					    network_mode: "host"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 不使用代理网络拉取最新代码
 | 
				
			||||||
 | 
					    command: >
 | 
				
			||||||
 | 
					      bash -c "python3 -u main.py"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## ===================================================
 | 
					## ===================================================
 | 
				
			||||||
## 【方案一】 如果不需要运行本地模型(仅 chatgpt, azure, 星火, 千帆, claude 等在线大模型服务)
 | 
					## 【方案一】 如果不需要运行本地模型(仅 chatgpt, azure, 星火, 千帆, claude 等在线大模型服务)
 | 
				
			||||||
## ===================================================
 | 
					## ===================================================
 | 
				
			||||||
 | 
				
			|||||||
@ -19,3 +19,8 @@
 | 
				
			|||||||
.wrap.svelte-xwlu1w {
 | 
					.wrap.svelte-xwlu1w {
 | 
				
			||||||
    min-height: var(--size-32);
 | 
					    min-height: var(--size-32);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* status bar height */
 | 
				
			||||||
 | 
					.min.svelte-1yrv54 {
 | 
				
			||||||
 | 
					    min-height: var(--size-12);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
@ -216,7 +216,7 @@ def get_reduce_token_percent(text):
 | 
				
			|||||||
        return 0.5, '不详'
 | 
					        return 0.5, '不详'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def write_history_to_file(history, file_basename=None, file_fullname=None):
 | 
					def write_history_to_file(history, file_basename=None, file_fullname=None, auto_caption=True):
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
    将对话记录history以Markdown格式写入文件中。如果没有指定文件名,则使用当前时间生成文件名。
 | 
					    将对话记录history以Markdown格式写入文件中。如果没有指定文件名,则使用当前时间生成文件名。
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
@ -235,7 +235,7 @@ def write_history_to_file(history, file_basename=None, file_fullname=None):
 | 
				
			|||||||
                if type(content) != str: content = str(content)
 | 
					                if type(content) != str: content = str(content)
 | 
				
			||||||
            except:
 | 
					            except:
 | 
				
			||||||
                continue
 | 
					                continue
 | 
				
			||||||
            if i % 2 == 0:
 | 
					            if i % 2 == 0 and auto_caption:
 | 
				
			||||||
                f.write('## ')
 | 
					                f.write('## ')
 | 
				
			||||||
            try:
 | 
					            try:
 | 
				
			||||||
                f.write(content)
 | 
					                f.write(content)
 | 
				
			||||||
 | 
				
			|||||||
							
								
								
									
										4
									
								
								version
									
									
									
									
									
								
							
							
						
						
									
										4
									
								
								version
									
									
									
									
									
								
							@ -1,5 +1,5 @@
 | 
				
			|||||||
{
 | 
					{
 | 
				
			||||||
  "version": 3.52,
 | 
					  "version": 3.53,
 | 
				
			||||||
  "show_feature": true,
 | 
					  "show_feature": true,
 | 
				
			||||||
  "new_feature": "提高稳定性&解决多用户冲突问题 <-> 支持插件分类和更多UI皮肤外观 <-> 支持用户使用自然语言调度各个插件(虚空终端) ! <-> 改进UI,设计新主题 <-> 支持借助GROBID实现PDF高精度翻译 <-> 接入百度千帆平台和文心一言 <-> 接入阿里通义千问、讯飞星火、上海AI-Lab书生 <-> 优化一键升级 <-> 提高arxiv翻译速度和成功率"
 | 
					  "new_feature": "支持动态选择不同界面主题 <-> 提高稳定性&解决多用户冲突问题 <-> 支持插件分类和更多UI皮肤外观 <-> 支持用户使用自然语言调度各个插件(虚空终端) ! <-> 改进UI,设计新主题 <-> 支持借助GROBID实现PDF高精度翻译 <-> 接入百度千帆平台和文心一言 <-> 接入阿里通义千问、讯飞星火、上海AI-Lab书生 <-> 优化一键升级 <-> 提高arxiv翻译速度和成功率"
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user