use legacy image io for gemini

This commit is contained in:
qingxu fu 2023-12-31 19:02:40 +08:00
parent a7c960dcb0
commit 60ba712131
2 changed files with 38 additions and 36 deletions

View File

@ -4,9 +4,10 @@
# @Descr : # @Descr :
import json import json
import re import re
import os
import time import time
from request_llms.com_google import GoogleChatInit from request_llms.com_google import GoogleChatInit
from toolbox import get_conf, update_ui, update_ui_lastest_msg from toolbox import get_conf, update_ui, update_ui_lastest_msg, have_any_recent_upload_image_files, trimmed_format_exc
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY') proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY')
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \ timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
@ -48,7 +49,16 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
if get_conf("GEMINI_API_KEY") == "": if get_conf("GEMINI_API_KEY") == "":
yield from update_ui_lastest_msg(f"请配置 GEMINI_API_KEY。", chatbot=chatbot, history=history, delay=0) yield from update_ui_lastest_msg(f"请配置 GEMINI_API_KEY。", chatbot=chatbot, history=history, delay=0)
return return
if "vision" in llm_kwargs["llm_model"]:
have_recent_file, image_paths = have_any_recent_upload_image_files(chatbot)
def make_media_input(inputs, image_paths):
for image_path in image_paths:
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
return inputs
if have_recent_file:
inputs = make_media_input(inputs, image_paths)
chatbot.append((inputs, "")) chatbot.append((inputs, ""))
yield from update_ui(chatbot=chatbot, history=history) yield from update_ui(chatbot=chatbot, history=history)
genai = GoogleChatInit() genai = GoogleChatInit()
@ -59,10 +69,9 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
break break
except Exception as e: except Exception as e:
retry += 1 retry += 1
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg)) chatbot[-1] = ((chatbot[-1][0], trimmed_format_exc()))
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else "" yield from update_ui(chatbot=chatbot, history=history, msg="请求失败") # 刷新界面
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时" + retry_msg) # 刷新界面 return
if retry > MAX_RETRY: raise TimeoutError
gpt_replying_buffer = "" gpt_replying_buffer = ""
gpt_security_policy = "" gpt_security_policy = ""
history.extend([inputs, '']) history.extend([inputs, ''])
@ -94,7 +103,6 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
if __name__ == '__main__': if __name__ == '__main__':
import sys import sys
llm_kwargs = {'llm_model': 'gemini-pro'} llm_kwargs = {'llm_model': 'gemini-pro'}
result = predict('Write long a story about a magic backpack.', llm_kwargs, llm_kwargs, []) result = predict('Write long a story about a magic backpack.', llm_kwargs, llm_kwargs, [])
for i in result: for i in result:

View File

@ -7,7 +7,7 @@ import os
import re import re
import requests import requests
from typing import List, Dict, Tuple from typing import List, Dict, Tuple
from toolbox import get_conf, encode_image from toolbox import get_conf, encode_image, get_pictures_list
proxies, TIMEOUT_SECONDS = get_conf('proxies', 'TIMEOUT_SECONDS') proxies, TIMEOUT_SECONDS = get_conf('proxies', 'TIMEOUT_SECONDS')
@ -35,20 +35,15 @@ def files_filter_handler(file_list):
return new_list return new_list
def input_encode_handler(inputs): def input_encode_handler(inputs, llm_kwargs):
if llm_kwargs['most_recent_uploaded'].get('path'):
image_paths = get_pictures_list(llm_kwargs['most_recent_uploaded']['path'])
md_encode = [] md_encode = []
pattern_md_file = r"(!?\[[^\]]+\]\([^\)]+\))" for md_path in image_paths:
matches_path = re.findall(pattern_md_file, inputs) md_encode.append({
for md_path in matches_path: "data": encode_image(md_path),
pattern_file = r"\((file=.*)\)" "type": os.path.splitext(md_path)[1].replace('.', '')
matches_path = re.findall(pattern_file, md_path) })
encode_file = files_filter_handler(file_list=matches_path)
if encode_file:
md_encode.extend([{
"data": encode_image(i),
"type": os.path.splitext(i)[1].replace('.', '')
} for i in encode_file])
inputs = inputs.replace(md_path, '')
return inputs, md_encode return inputs, md_encode
@ -127,13 +122,19 @@ class GoogleChatInit:
def __init__(self): def __init__(self):
self.url_gemini = 'https://generativelanguage.googleapis.com/v1beta/models/%m:streamGenerateContent?key=%k' self.url_gemini = 'https://generativelanguage.googleapis.com/v1beta/models/%m:streamGenerateContent?key=%k'
def __conversation_user(self, user_input): def generate_chat(self, inputs, llm_kwargs, history, system_prompt):
headers, payload = self.generate_message_payload(inputs, llm_kwargs, history, system_prompt)
response = requests.post(url=self.url_gemini, headers=headers, data=json.dumps(payload),
stream=True, proxies=proxies, timeout=TIMEOUT_SECONDS)
return response.iter_lines()
def __conversation_user(self, user_input, llm_kwargs):
what_i_have_asked = {"role": "user", "parts": []} what_i_have_asked = {"role": "user", "parts": []}
if 'vision' not in self.url_gemini: if 'vision' not in self.url_gemini:
input_ = user_input input_ = user_input
encode_img = [] encode_img = []
else: else:
input_, encode_img = input_encode_handler(user_input) input_, encode_img = input_encode_handler(user_input, llm_kwargs=llm_kwargs)
what_i_have_asked['parts'].append({'text': input_}) what_i_have_asked['parts'].append({'text': input_})
if encode_img: if encode_img:
for data in encode_img: for data in encode_img:
@ -144,12 +145,12 @@ class GoogleChatInit:
}}) }})
return what_i_have_asked return what_i_have_asked
def __conversation_history(self, history): def __conversation_history(self, history, llm_kwargs):
messages = [] messages = []
conversation_cnt = len(history) // 2 conversation_cnt = len(history) // 2
if conversation_cnt: if conversation_cnt:
for index in range(0, 2 * conversation_cnt, 2): for index in range(0, 2 * conversation_cnt, 2):
what_i_have_asked = self.__conversation_user(history[index]) what_i_have_asked = self.__conversation_user(history[index], llm_kwargs)
what_gpt_answer = { what_gpt_answer = {
"role": "model", "role": "model",
"parts": [{"text": history[index + 1]}] "parts": [{"text": history[index + 1]}]
@ -158,12 +159,6 @@ class GoogleChatInit:
messages.append(what_gpt_answer) messages.append(what_gpt_answer)
return messages return messages
def generate_chat(self, inputs, llm_kwargs, history, system_prompt):
headers, payload = self.generate_message_payload(inputs, llm_kwargs, history, system_prompt)
response = requests.post(url=self.url_gemini, headers=headers, data=json.dumps(payload),
stream=True, proxies=proxies, timeout=TIMEOUT_SECONDS)
return response.iter_lines()
def generate_message_payload(self, inputs, llm_kwargs, history, system_prompt) -> Tuple[Dict, Dict]: def generate_message_payload(self, inputs, llm_kwargs, history, system_prompt) -> Tuple[Dict, Dict]:
messages = [ messages = [
# {"role": "system", "parts": [{"text": system_prompt}]}, # gemini 不允许对话轮次为偶数,所以这个没有用,看后续支持吧。。。 # {"role": "system", "parts": [{"text": system_prompt}]}, # gemini 不允许对话轮次为偶数,所以这个没有用,看后续支持吧。。。
@ -176,14 +171,14 @@ class GoogleChatInit:
) )
header = {'Content-Type': 'application/json'} header = {'Content-Type': 'application/json'}
if 'vision' not in self.url_gemini: # 不是vision 才处理history if 'vision' not in self.url_gemini: # 不是vision 才处理history
messages.extend(self.__conversation_history(history)) # 处理 history messages.extend(self.__conversation_history(history, llm_kwargs)) # 处理 history
messages.append(self.__conversation_user(inputs)) # 处理用户对话 messages.append(self.__conversation_user(inputs, llm_kwargs)) # 处理用户对话
payload = { payload = {
"contents": messages, "contents": messages,
"generationConfig": { "generationConfig": {
# "maxOutputTokens": 800,
"stopSequences": str(llm_kwargs.get('stop', '')).split(' '), "stopSequences": str(llm_kwargs.get('stop', '')).split(' '),
"temperature": llm_kwargs.get('temperature', 1), "temperature": llm_kwargs.get('temperature', 1),
# "maxOutputTokens": 800,
"topP": llm_kwargs.get('top_p', 0.8), "topP": llm_kwargs.get('top_p', 0.8),
"topK": 10 "topK": 10
} }
@ -193,6 +188,5 @@ class GoogleChatInit:
if __name__ == '__main__': if __name__ == '__main__':
google = GoogleChatInit() google = GoogleChatInit()
# print(gootle.generate_message_payload('你好呀', {}, # print(gootle.generate_message_payload('你好呀', {}, ['123123', '3123123'], ''))
# ['123123', '3123123'], ''))
# gootle.input_encode_handle('123123[123123](./123123), ![53425](./asfafa/fff.jpg)') # gootle.input_encode_handle('123123[123123](./123123), ![53425](./asfafa/fff.jpg)')