diff --git a/Dockerfile+ChatGLM b/Dockerfile+ChatGLM index e7db211..f99f2a6 100644 --- a/Dockerfile+ChatGLM +++ b/Dockerfile+ChatGLM @@ -1,6 +1,6 @@ # How to build | 如何构建: docker build -t gpt-academic --network=host -f Dockerfile+ChatGLM . -# How to run | 如何运行 (1) 直接运行: docker run --rm -it --net=host gpt-academic -# How to run | 如何运行 (2) 我想运行之前进容器做一些调整: docker run --rm -it --net=host --gpu=all gpt-academic bash +# How to run | 如何运行 (1) 直接运行: docker run --rm -it --net=host --gpus=all gpt-academic +# How to run | 如何运行 (2) 我想运行之前进容器做一些调整: docker run --rm -it --net=host --gpus=all gpt-academic bash # 从NVIDIA源,从而支持显卡运损(检查宿主的nvidia-smi中的cuda版本必须>=11.3) FROM nvidia/cuda:11.3.1-runtime-ubuntu20.04 @@ -30,18 +30,21 @@ RUN $useProxyNetwork python3 -m pip install -r requirements.txt RUN $useProxyNetwork python3 -m pip install -r request_llm/requirements_chatglm.txt RUN $useProxyNetwork python3 -m pip install torch --extra-index-url https://download.pytorch.org/whl/cu113 -# 为chatgpt-academic配置代理和API-KEY (非必要 可选步骤) -RUN echo ' \n\ -API_KEY = "sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" \n\ -USE_PROXY = True \n\ -proxies = { "http": "socks5h://localhost:10880", "https": "socks5h://localhost:10880", } ' >> config_private.py - # 预热CHATGLM参数(非必要 可选步骤) RUN echo ' \n\ from transformers import AutoModel, AutoTokenizer \n\ chatglm_tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) \n\ chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float() ' >> warm_up_chatglm.py RUN python3 -u warm_up_chatglm.py +RUN $useProxyNetwork git pull + +# 为chatgpt-academic配置代理和API-KEY (非必要 可选步骤) +RUN echo ' \n\ +API_KEY = "sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" \n\ +USE_PROXY = True \n\ +LLM_MODEL = "chatglm" \n\ +LOCAL_MODEL_DEVICE = "cuda" \n\ +proxies = { "http": "socks5h://localhost:10880", "https": "socks5h://localhost:10880", } ' >> config_private.py # 启动 CMD ["python3", "-u", "main.py"]