commit
62a596ef30
@ -246,5 +246,15 @@ def get_crazy_functions():
|
|||||||
"Function": HotReload(图片生成)
|
"Function": HotReload(图片生成)
|
||||||
},
|
},
|
||||||
})
|
})
|
||||||
|
from crazy_functions.总结音视频 import 总结音视频
|
||||||
|
function_plugins.update({
|
||||||
|
"批量总结音视频(输入路径或上传压缩包)": {
|
||||||
|
"Color": "stop",
|
||||||
|
"AsButton": False,
|
||||||
|
"AdvancedArgs": True,
|
||||||
|
"ArgsReminder": "调用openai api 使用whisper-1模型, 目前支持的格式:mp4, m4a, wav, mpga, mpeg, mp3。此处可以输入解析提示,例如:解析为简体中文(默认)。",
|
||||||
|
"Function": HotReload(总结音视频)
|
||||||
|
}
|
||||||
|
})
|
||||||
###################### 第n组插件 ###########################
|
###################### 第n组插件 ###########################
|
||||||
return function_plugins
|
return function_plugins
|
||||||
|
@ -55,6 +55,7 @@ def 图片生成(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
|||||||
history = [] # 清空历史,以免输入溢出
|
history = [] # 清空历史,以免输入溢出
|
||||||
chatbot.append(("这是什么功能?", "[Local Message] 生成图像, 请先把模型切换至gpt-xxxx或者api2d-xxxx。如果中文效果不理想, 尝试Prompt。正在处理中 ....."))
|
chatbot.append(("这是什么功能?", "[Local Message] 生成图像, 请先把模型切换至gpt-xxxx或者api2d-xxxx。如果中文效果不理想, 尝试Prompt。正在处理中 ....."))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||||
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||||
resolution = plugin_kwargs.get("advanced_arg", '256x256')
|
resolution = plugin_kwargs.get("advanced_arg", '256x256')
|
||||||
image_url, image_path = gen_image(llm_kwargs, prompt, resolution)
|
image_url, image_path = gen_image(llm_kwargs, prompt, resolution)
|
||||||
chatbot.append([prompt,
|
chatbot.append([prompt,
|
||||||
|
184
crazy_functions/总结音视频.py
Normal file
184
crazy_functions/总结音视频.py
Normal file
@ -0,0 +1,184 @@
|
|||||||
|
from toolbox import CatchException, report_execption, select_api_key, update_ui, write_results_to_file, get_conf
|
||||||
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
|
|
||||||
|
def split_audio_file(filename, split_duration=1000):
|
||||||
|
"""
|
||||||
|
根据给定的切割时长将音频文件切割成多个片段。
|
||||||
|
|
||||||
|
Args:
|
||||||
|
filename (str): 需要被切割的音频文件名。
|
||||||
|
split_duration (int, optional): 每个切割音频片段的时长(以秒为单位)。默认值为1000。
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
filelist (list): 一个包含所有切割音频片段文件路径的列表。
|
||||||
|
|
||||||
|
"""
|
||||||
|
from moviepy.editor import AudioFileClip
|
||||||
|
import os
|
||||||
|
os.makedirs('gpt_log/mp3/cut/', exist_ok=True) # 创建存储切割音频的文件夹
|
||||||
|
|
||||||
|
# 读取音频文件
|
||||||
|
audio = AudioFileClip(filename)
|
||||||
|
|
||||||
|
# 计算文件总时长和切割点
|
||||||
|
total_duration = audio.duration
|
||||||
|
split_points = list(range(0, int(total_duration), split_duration))
|
||||||
|
split_points.append(int(total_duration))
|
||||||
|
filelist = []
|
||||||
|
|
||||||
|
# 切割音频文件
|
||||||
|
for i in range(len(split_points) - 1):
|
||||||
|
start_time = split_points[i]
|
||||||
|
end_time = split_points[i + 1]
|
||||||
|
split_audio = audio.subclip(start_time, end_time)
|
||||||
|
split_audio.write_audiofile(f"gpt_log/mp3/cut/{filename[0]}_{i}.mp3")
|
||||||
|
filelist.append(f"gpt_log/mp3/cut/{filename[0]}_{i}.mp3")
|
||||||
|
|
||||||
|
audio.close()
|
||||||
|
return filelist
|
||||||
|
|
||||||
|
def AnalyAudio(parse_prompt, file_manifest, llm_kwargs, chatbot, history):
|
||||||
|
import os, requests
|
||||||
|
from moviepy.editor import AudioFileClip
|
||||||
|
from request_llm.bridge_all import model_info
|
||||||
|
|
||||||
|
# 设置OpenAI密钥和模型
|
||||||
|
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
||||||
|
chat_endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||||
|
|
||||||
|
whisper_endpoint = chat_endpoint.replace('chat/completions', 'audio/transcriptions')
|
||||||
|
url = whisper_endpoint
|
||||||
|
headers = {
|
||||||
|
'Authorization': f"Bearer {api_key}"
|
||||||
|
}
|
||||||
|
|
||||||
|
os.makedirs('gpt_log/mp3/', exist_ok=True)
|
||||||
|
for index, fp in enumerate(file_manifest):
|
||||||
|
audio_history = []
|
||||||
|
# 提取文件扩展名
|
||||||
|
ext = os.path.splitext(fp)[1]
|
||||||
|
# 提取视频中的音频
|
||||||
|
if ext not in [".mp3", ".wav", ".m4a", ".mpga"]:
|
||||||
|
audio_clip = AudioFileClip(fp)
|
||||||
|
audio_clip.write_audiofile(f'gpt_log/mp3/output{index}.mp3')
|
||||||
|
fp = f'gpt_log/mp3/output{index}.mp3'
|
||||||
|
# 调用whisper模型音频转文字
|
||||||
|
voice = split_audio_file(fp)
|
||||||
|
for j, i in enumerate(voice):
|
||||||
|
with open(i, 'rb') as f:
|
||||||
|
file_content = f.read() # 读取文件内容到内存
|
||||||
|
files = {
|
||||||
|
'file': (os.path.basename(i), file_content),
|
||||||
|
}
|
||||||
|
data = {
|
||||||
|
"model": "whisper-1",
|
||||||
|
"prompt": parse_prompt,
|
||||||
|
'response_format': "text"
|
||||||
|
}
|
||||||
|
|
||||||
|
chatbot.append([f"将 {i} 发送到openai音频解析终端 (whisper),当前参数:{parse_prompt}", "正在处理 ..."])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
proxies, = get_conf('proxies')
|
||||||
|
response = requests.post(url, headers=headers, files=files, data=data, proxies=proxies).text
|
||||||
|
|
||||||
|
chatbot.append(["音频解析结果", response])
|
||||||
|
history.extend(["音频解析结果", response])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
|
i_say = f'请对下面的音频片段做概述,音频内容是 ```{response}```'
|
||||||
|
i_say_show_user = f'第{index + 1}段音频的第{j + 1} / {len(voice)}片段。'
|
||||||
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
|
inputs=i_say,
|
||||||
|
inputs_show_user=i_say_show_user,
|
||||||
|
llm_kwargs=llm_kwargs,
|
||||||
|
chatbot=chatbot,
|
||||||
|
history=[],
|
||||||
|
sys_prompt=f"总结音频。音频文件名{fp}"
|
||||||
|
)
|
||||||
|
|
||||||
|
chatbot[-1] = (i_say_show_user, gpt_say)
|
||||||
|
history.extend([i_say_show_user, gpt_say])
|
||||||
|
audio_history.extend([i_say_show_user, gpt_say])
|
||||||
|
|
||||||
|
# 已经对该文章的所有片段总结完毕,如果文章被切分了
|
||||||
|
result = "".join(audio_history)
|
||||||
|
if len(audio_history) > 1:
|
||||||
|
i_say = f"根据以上的对话,使用中文总结音频“{result}”的主要内容。"
|
||||||
|
i_say_show_user = f'第{index + 1}段音频的主要内容:'
|
||||||
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
|
inputs=i_say,
|
||||||
|
inputs_show_user=i_say_show_user,
|
||||||
|
llm_kwargs=llm_kwargs,
|
||||||
|
chatbot=chatbot,
|
||||||
|
history=audio_history,
|
||||||
|
sys_prompt="总结文章。"
|
||||||
|
)
|
||||||
|
|
||||||
|
history.extend([i_say, gpt_say])
|
||||||
|
audio_history.extend([i_say, gpt_say])
|
||||||
|
|
||||||
|
res = write_results_to_file(history)
|
||||||
|
chatbot.append((f"第{index + 1}段音频完成了吗?", res))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
|
# 删除中间文件夹
|
||||||
|
import shutil
|
||||||
|
shutil.rmtree('gpt_log/mp3')
|
||||||
|
res = write_results_to_file(history)
|
||||||
|
chatbot.append(("所有音频都总结完成了吗?", res))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
|
||||||
|
|
||||||
|
@CatchException
|
||||||
|
def 总结音视频(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, WEB_PORT):
|
||||||
|
import glob, os
|
||||||
|
|
||||||
|
# 基本信息:功能、贡献者
|
||||||
|
chatbot.append([
|
||||||
|
"函数插件功能?",
|
||||||
|
"总结音视频内容,函数插件贡献者: dalvqw & BinaryHusky"])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
|
try:
|
||||||
|
from moviepy.editor import AudioFileClip
|
||||||
|
except:
|
||||||
|
report_execption(chatbot, history,
|
||||||
|
a=f"解析项目: {txt}",
|
||||||
|
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade moviepy```。")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# 清空历史,以免输入溢出
|
||||||
|
history = []
|
||||||
|
|
||||||
|
# 检测输入参数,如没有给定输入参数,直接退出
|
||||||
|
if os.path.exists(txt):
|
||||||
|
project_folder = txt
|
||||||
|
else:
|
||||||
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
|
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# 搜索需要处理的文件清单
|
||||||
|
extensions = ['.mp4', '.m4a', '.wav', '.mpga', '.mpeg', '.mp3', '.avi', '.mkv', '.flac', '.aac']
|
||||||
|
|
||||||
|
if txt.endswith(tuple(extensions)):
|
||||||
|
file_manifest = [txt]
|
||||||
|
else:
|
||||||
|
file_manifest = []
|
||||||
|
for extension in extensions:
|
||||||
|
file_manifest.extend(glob.glob(f'{project_folder}/**/*{extension}', recursive=True))
|
||||||
|
|
||||||
|
# 如果没找到任何文件
|
||||||
|
if len(file_manifest) == 0:
|
||||||
|
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何音频或视频文件: {txt}")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# 开始正式执行任务
|
||||||
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||||
|
parse_prompt = plugin_kwargs.get("advanced_arg", '将音频解析为简体中文')
|
||||||
|
yield from AnalyAudio(parse_prompt, file_manifest, llm_kwargs, chatbot, history)
|
||||||
|
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
@ -67,6 +67,7 @@ def parseNotebook(filename, enable_markdown=1):
|
|||||||
def ipynb解释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
def ipynb解释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
|
|
||||||
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||||
enable_markdown = plugin_kwargs.get("advanced_arg", "1")
|
enable_markdown = plugin_kwargs.get("advanced_arg", "1")
|
||||||
try:
|
try:
|
||||||
enable_markdown = int(enable_markdown)
|
enable_markdown = int(enable_markdown)
|
||||||
|
@ -45,6 +45,7 @@ def 同时问询_指定模型(txt, llm_kwargs, plugin_kwargs, chatbot, history,
|
|||||||
chatbot.append((txt, "正在同时咨询ChatGPT和ChatGLM……"))
|
chatbot.append((txt, "正在同时咨询ChatGPT和ChatGLM……"))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||||
|
|
||||||
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||||
# llm_kwargs['llm_model'] = 'chatglm&gpt-3.5-turbo&api2d-gpt-3.5-turbo' # 支持任意数量的llm接口,用&符号分隔
|
# llm_kwargs['llm_model'] = 'chatglm&gpt-3.5-turbo&api2d-gpt-3.5-turbo' # 支持任意数量的llm接口,用&符号分隔
|
||||||
llm_kwargs['llm_model'] = plugin_kwargs.get("advanced_arg", 'chatglm&gpt-3.5-turbo') # 'chatglm&gpt-3.5-turbo' # 支持任意数量的llm接口,用&符号分隔
|
llm_kwargs['llm_model'] = plugin_kwargs.get("advanced_arg", 'chatglm&gpt-3.5-turbo') # 'chatglm&gpt-3.5-turbo' # 支持任意数量的llm接口,用&符号分隔
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
|
Loading…
x
Reference in New Issue
Block a user