langchain

This commit is contained in:
505030475 2023-05-30 12:54:42 +08:00
parent 6789d1fab4
commit 6d1ea643e9
6 changed files with 286 additions and 59 deletions

View File

@ -34,58 +34,28 @@ def print亮紫(*kw,**kargs):
def print亮靛(*kw,**kargs):
print("\033[1;36m",*kw,"\033[0m",**kargs)
def print亮红(*kw,**kargs):
print("\033[1;31m",*kw,"\033[0m",**kargs)
def print亮绿(*kw,**kargs):
print("\033[1;32m",*kw,"\033[0m",**kargs)
def print亮黄(*kw,**kargs):
print("\033[1;33m",*kw,"\033[0m",**kargs)
def print亮蓝(*kw,**kargs):
print("\033[1;34m",*kw,"\033[0m",**kargs)
def print亮紫(*kw,**kargs):
print("\033[1;35m",*kw,"\033[0m",**kargs)
def print亮靛(*kw,**kargs):
print("\033[1;36m",*kw,"\033[0m",**kargs)
print_red = print红
print_green = print绿
print_yellow = print黄
print_blue = print蓝
print_purple = print紫
print_indigo = print靛
print_bold_red = print亮红
print_bold_green = print亮绿
print_bold_yellow = print亮黄
print_bold_blue = print亮蓝
print_bold_purple = print亮紫
print_bold_indigo = print亮靛
if not stdout.isatty():
# redirection, avoid a fucked up log file
print红 = print
print绿 = print
print黄 = print
print蓝 = print
print紫 = print
print靛 = print
print亮红 = print
print亮绿 = print
print亮黄 = print
print亮蓝 = print
print亮紫 = print
print亮靛 = print
print_red = print
print_green = print
print_yellow = print
print_blue = print
print_purple = print
print_indigo = print
print_bold_red = print
print_bold_green = print
print_bold_yellow = print
print_bold_blue = print
print_bold_purple = print
print_bold_indigo = print
# Do you like the elegance of Chinese characters?
def sprint红(*kw):
return "\033[0;31m"+' '.join(kw)+"\033[0m"
def sprint绿(*kw):
return "\033[0;32m"+' '.join(kw)+"\033[0m"
def sprint黄(*kw):
return "\033[0;33m"+' '.join(kw)+"\033[0m"
def sprint蓝(*kw):
return "\033[0;34m"+' '.join(kw)+"\033[0m"
def sprint紫(*kw):
return "\033[0;35m"+' '.join(kw)+"\033[0m"
def sprint靛(*kw):
return "\033[0;36m"+' '.join(kw)+"\033[0m"
def sprint亮红(*kw):
return "\033[1;31m"+' '.join(kw)+"\033[0m"
def sprint亮绿(*kw):
return "\033[1;32m"+' '.join(kw)+"\033[0m"
def sprint亮黄(*kw):
return "\033[1;33m"+' '.join(kw)+"\033[0m"
def sprint亮蓝(*kw):
return "\033[1;34m"+' '.join(kw)+"\033[0m"
def sprint亮紫(*kw):
return "\033[1;35m"+' '.join(kw)+"\033[0m"
def sprint亮靛(*kw):
return "\033[1;36m"+' '.join(kw)+"\033[0m"

View File

@ -295,5 +295,17 @@ def get_crazy_functions():
except:
print('Load function plugin failed')
try:
from crazy_functions.Langchain知识库 import 知识库问答
function_plugins.update({
"构建知识库(请先上传文件素材)": {
"Color": "stop",
"AsButton": False,
"Function": HotReload(知识库问答)
}
})
except:
print('Load function plugin failed')
###################### 第n组插件 ###########################
return function_plugins

View File

@ -0,0 +1,88 @@
from toolbox import CatchException, update_ui, ProxyNetworkActivate
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_files_from_everything
@CatchException
def 知识库问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本例如需要翻译的一段话再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数, 如温度和top_p等, 一般原样传递下去就行
plugin_kwargs 插件模型的参数暂时没有用武之地
chatbot 聊天显示框的句柄用于显示给用户
history 聊天历史前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出
chatbot.append(("这是什么功能?", "[Local Message] 从一批文件(txt, md, tex)中读取数据构建知识库, 然后进行问答。"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
try:
import zh_langchain
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from .crazy_utils import knowledge_archive_interface
except Exception as e:
chatbot.append(
["依赖不足",
"导入依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade langchain zh_langchain```。"]
)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# < --------------------读取文件--------------- >
file_manifest = []
spl = ["doc", "docx", "email", "epub", "html", "image", "json", "md", "msg", "odt", "pdf", "ppt", "pptx", "rtf", "text"]
for sp in spl:
_, file_manifest_tmp, _ = get_files_from_everything(txt, type=f'.{sp}')
file_manifest += file_manifest_tmp
if len(file_manifest) == 0:
chatbot.append(["没有找到任何可读取文件", "当前支持的格式包括: txt, md, tex"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# < -------------------预热文本向量化模组--------------- >
chatbot.append(['<br/>'.join(file_manifest), "正在预热文本向量化模组, 如果是第一次运行, 将消耗较长时间下载中文向量化模型..."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
print('Checking Text2vec ...')
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
with ProxyNetworkActivate(): # 临时地激活代理网络
HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese", model_kwargs={'device': 'cpu'})
# < -------------------构建知识库--------------- >
chatbot.append(['<br/>'.join(file_manifest), "正在构建知识库..."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
print('Establishing knowledge archive ...')
with ProxyNetworkActivate(): # 临时地激活代理网络
kai = knowledge_archive_interface()
kai.feed_archive(file_manifest=file_manifest, id="default")
chatbot.append(['知识库构建成功', "正在将知识库存储至cookie中"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
chatbot._cookies['langchain_plugin_embedding'] = kai.get_current_archive_id()
chatbot._cookies['lock_plugin'] = 'crazy_functions.Langchain知识库->读取知识库作答'
chatbot.append(['完成', "“根据知识库作答”函数插件已经接管问答系统, 提问吧! 但注意, 您接下来不能再使用其他插件了,刷新页面即可以退出知识库问答模式。"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间我们先及时地做一次界面更新
@CatchException
def 读取知识库作答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port=-1):
# < ------------------- --------------- >
from .crazy_utils import knowledge_archive_interface
kai = knowledge_archive_interface()
if 'langchain_plugin_embedding' in chatbot._cookies:
resp, prompt = kai.answer_with_archive_by_id(txt, chatbot._cookies['langchain_plugin_embedding'])
else:
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
kai_id = plugin_kwargs.get("advanced_arg", 'default')
resp, prompt = kai.answer_with_archive_by_id(txt, kai_id)
chatbot.append((txt, '[Local Message] ' + prompt))
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=prompt, inputs_show_user=txt,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
sys_prompt=system_prompt
)
history.extend((prompt, gpt_say))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间我们先及时地做一次界面更新

View File

@ -3,6 +3,8 @@
这个文件用于函数插件的单元测试
运行方法 python crazy_functions/crazy_functions_test.py
"""
# ==============================================================================================================================
def validate_path():
import os, sys
@ -10,10 +12,16 @@ def validate_path():
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
os.chdir(root_dir_assume)
sys.path.append(root_dir_assume)
validate_path() # validate path so you can run from base directory
# ==============================================================================================================================
from colorful import *
from toolbox import get_conf, ChatBotWithCookies
import contextlib
import os
import sys
from functools import wraps
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY = \
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY')
@ -30,7 +38,43 @@ history = []
system_prompt = "Serve me as a writing and programming assistant."
web_port = 1024
# ==============================================================================================================================
def silence_stdout(func):
@wraps(func)
def wrapper(*args, **kwargs):
_original_stdout = sys.stdout
sys.stdout = open(os.devnull, 'w')
for q in func(*args, **kwargs):
sys.stdout = _original_stdout
yield q
sys.stdout = open(os.devnull, 'w')
sys.stdout.close()
sys.stdout = _original_stdout
return wrapper
class CLI_Printer():
def __init__(self) -> None:
self.pre_buf = ""
def print(self, buf):
bufp = ""
for index, chat in enumerate(buf):
a, b = chat
bufp += sprint亮靛('[Me]:' + a) + '\n'
bufp += '[GPT]:' + b
if index < len(buf)-1:
bufp += '\n'
if self.pre_buf!="" and bufp.startswith(self.pre_buf):
print(bufp[len(self.pre_buf):], end='')
else:
print('\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n'+bufp, end='')
self.pre_buf = bufp
return
cli_printer = CLI_Printer()
# ==============================================================================================================================
def test_解析一个Python项目():
from crazy_functions.解析项目源代码 import 解析一个Python项目
txt = "crazy_functions/test_project/python/dqn"
@ -116,6 +160,25 @@ def test_Markdown多语言():
for cookies, cb, hist, msg in Markdown翻译指定语言(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
def test_Langchain知识库():
from crazy_functions.Langchain知识库 import 知识库问答
txt = "README.md"
chatbot = ChatBotWithCookies(llm_kwargs)
for cookies, cb, hist, msg in silence_stdout(知识库问答)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
cli_printer.print(cb) # print(cb)
chatbot = ChatBotWithCookies(cookies)
from crazy_functions.Langchain知识库 import 读取知识库作答
txt = "摘要?"
for cookies, cb, hist, msg in silence_stdout(读取知识库作答)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
cli_printer.print(cb) # print(cb)
def test_Langchain知识库读取():
from crazy_functions.Langchain知识库 import 读取知识库作答
txt = "远程云服务器部署?"
for cookies, cb, hist, msg in silence_stdout(读取知识库作答)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
cli_printer.print(cb) # print(cb)
# test_解析一个Python项目()
@ -129,7 +192,8 @@ def test_Markdown多语言():
# test_联网回答问题()
# test_解析ipynb文件()
# test_数学动画生成manim()
test_Markdown多语言()
test_Langchain知识库()
# test_Langchain知识库读取()
input("程序完成,回车退出。")
print("退出。")

View File

@ -1,4 +1,5 @@
from toolbox import update_ui, get_conf, trimmed_format_exc
import threading
def input_clipping(inputs, history, max_token_limit):
import numpy as np
@ -606,3 +607,87 @@ def get_files_from_everything(txt, type): # type='.md'
success = False
return success, file_manifest, project_folder
def Singleton(cls):
_instance = {}
def _singleton(*args, **kargs):
if cls not in _instance:
_instance[cls] = cls(*args, **kargs)
return _instance[cls]
return _singleton
@Singleton
class knowledge_archive_interface():
def __init__(self) -> None:
self.threadLock = threading.Lock()
self.current_id = ""
self.kai_path = None
self.qa_handle = None
self.text2vec_large_chinese = None
def get_chinese_text2vec(self):
if self.text2vec_large_chinese is None:
# < -------------------预热文本向量化模组--------------- >
from toolbox import ProxyNetworkActivate
print('Checking Text2vec ...')
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
with ProxyNetworkActivate(): # 临时地激活代理网络
self.text2vec_large_chinese = HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese", model_kwargs={'device': 'cpu'})
return self.text2vec_large_chinese
def feed_archive(self, file_manifest, id="default"):
self.threadLock.acquire()
# import uuid
self.current_id = id
from zh_langchain import construct_vector_store
self.qa_handle, self.kai_path = construct_vector_store(
vs_id=self.current_id,
files=file_manifest,
sentence_size=100,
history=[],
one_conent="",
one_content_segmentation="",
text2vec = self.get_chinese_text2vec(),
)
self.threadLock.release()
def get_current_archive_id(self):
return self.current_id
def answer_with_archive_by_id(self, txt, id):
self.threadLock.acquire()
if not self.current_id == id:
self.current_id = id
from zh_langchain import construct_vector_store
self.qa_handle, self.kai_path = construct_vector_store(
vs_id=self.current_id,
files=[],
sentence_size=100,
history=[],
one_conent="",
one_content_segmentation="",
text2vec = self.get_chinese_text2vec(),
)
VECTOR_SEARCH_SCORE_THRESHOLD = 0
VECTOR_SEARCH_TOP_K = 4
CHUNK_SIZE = 512
resp, prompt = self.qa_handle.get_knowledge_based_conent_test(
query = txt,
vs_path = self.kai_path,
score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
vector_search_top_k=VECTOR_SEARCH_TOP_K,
chunk_conent=True,
chunk_size=CHUNK_SIZE,
text2vec = self.get_chinese_text2vec(),
)
self.threadLock.release()
return resp, prompt

View File

@ -59,7 +59,15 @@ def ArgsGeneralWrapper(f):
}
chatbot_with_cookie = ChatBotWithCookies(cookies)
chatbot_with_cookie.write_list(chatbot)
yield from f(txt_passon, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, system_prompt, *args)
if 'lock_plugin' in cookies and cookies['lock_plugin'] is not None:
# 处理插件锁定状态
module, fn_name = cookies['lock_plugin'].split('->')
f_hot_reload = getattr(importlib.import_module(module, fn_name), fn_name)
yield from HotReload(f_hot_reload)(txt_passon, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, system_prompt, *args)
else:
# 正常状态
yield from f(txt_passon, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, system_prompt, *args)
return decorated
@ -83,7 +91,7 @@ def CatchException(f):
"""
@wraps(f)
def decorated(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def decorated(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT=-1):
try:
yield from f(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT)
except Exception as e: