diff --git a/config.py b/config.py index 9c1a000..82aa953 100644 --- a/config.py +++ b/config.py @@ -71,7 +71,7 @@ MAX_RETRY = 2 # 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 ) LLM_MODEL = "gpt-3.5-turbo" # 可选 ↓↓↓ AVAIL_LLM_MODELS = ["gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss", "newbing", "stack-claude"] -# P.S. 其他可用的模型还包括 ["gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "newbing-free", "jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"] +# P.S. 其他可用的模型还包括 ["gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "claude-1-100k", "claude-2", "jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"] # ChatGLM(2) Finetune Model Path (如果使用ChatGLM2微调模型,需要把"chatglmft"加入AVAIL_LLM_MODELS中) @@ -89,9 +89,11 @@ CONCURRENT_COUNT = 100 # 是否在提交时自动清空输入框 AUTO_CLEAR_TXT = False + # 色彩主体,可选 ["Default", "Chuanhu-Small-and-Beautiful"] THEME = "Default" + # 加一个live2d装饰 ADD_WAIFU = False @@ -131,3 +133,7 @@ put your new bing cookies here ENABLE_AUDIO = False ALIYUN_TOKEN="" # 例如 f37f30e0f9934c34a992f6f64f7eba4f ALIYUN_APPKEY="" # 例如 RoPlZrM88DnAFkZK + + +# Claude API KEY +ANTHROPIC_API_KEY = "" \ No newline at end of file diff --git a/request_llm/bridge_all.py b/request_llm/bridge_all.py index c8ec2da..9c6d774 100644 --- a/request_llm/bridge_all.py +++ b/request_llm/bridge_all.py @@ -170,6 +170,29 @@ model_info = { AVAIL_LLM_MODELS, LLM_MODEL = get_conf("AVAIL_LLM_MODELS", "LLM_MODEL") AVAIL_LLM_MODELS = AVAIL_LLM_MODELS + [LLM_MODEL] +if "claude-1-100k" in AVAIL_LLM_MODELS or "claude-2" in AVAIL_LLM_MODELS: + from .bridge_claude import predict_no_ui_long_connection as claude_noui + from .bridge_claude import predict as claude_ui + model_info.update({ + "claude-1-100k": { + "fn_with_ui": claude_ui, + "fn_without_ui": claude_noui, + "endpoint": None, + "max_token": 8196, + "tokenizer": tokenizer_gpt35, + "token_cnt": get_token_num_gpt35, + }, + }) + model_info.update({ + "claude-2": { + "fn_with_ui": claude_ui, + "fn_without_ui": claude_noui, + "endpoint": None, + "max_token": 8196, + "tokenizer": tokenizer_gpt35, + "token_cnt": get_token_num_gpt35, + }, + }) if "jittorllms_rwkv" in AVAIL_LLM_MODELS: from .bridge_jittorllms_rwkv import predict_no_ui_long_connection as rwkv_noui from .bridge_jittorllms_rwkv import predict as rwkv_ui diff --git a/request_llm/bridge_claude.py b/request_llm/bridge_claude.py new file mode 100644 index 0000000..af79fc8 --- /dev/null +++ b/request_llm/bridge_claude.py @@ -0,0 +1,231 @@ +# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目 + +""" + 该文件中主要包含2个函数 + + 不具备多线程能力的函数: + 1. predict: 正常对话时使用,具备完备的交互功能,不可多线程 + + 具备多线程调用能力的函数 + 2. predict_no_ui_long_connection:在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程 +""" + +import os +import json +import time +import gradio as gr +import logging +import traceback +import requests +import importlib + +# config_private.py放自己的秘密如API和代理网址 +# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件 +from toolbox import get_conf, update_ui, trimmed_format_exc, ProxyNetworkActivate +proxies, TIMEOUT_SECONDS, MAX_RETRY, ANTHROPIC_API_KEY = \ + get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'ANTHROPIC_API_KEY') + +timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \ + '网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。' + +def get_full_error(chunk, stream_response): + """ + 获取完整的从Openai返回的报错 + """ + while True: + try: + chunk += next(stream_response) + except: + break + return chunk + + +def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False): + """ + 发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。 + inputs: + 是本次问询的输入 + sys_prompt: + 系统静默prompt + llm_kwargs: + chatGPT的内部调优参数 + history: + 是之前的对话列表 + observe_window = None: + 用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗 + """ + from anthropic import Anthropic + watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可 + prompt = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True) + retry = 0 + if len(ANTHROPIC_API_KEY) == 0: + raise RuntimeError("没有设置ANTHROPIC_API_KEY选项") + + while True: + try: + # make a POST request to the API endpoint, stream=False + from .bridge_all import model_info + anthropic = Anthropic(api_key=ANTHROPIC_API_KEY) + # endpoint = model_info[llm_kwargs['llm_model']]['endpoint'] + # with ProxyNetworkActivate() + stream = anthropic.completions.create( + prompt=prompt, + max_tokens_to_sample=4096, # The maximum number of tokens to generate before stopping. + model=llm_kwargs['llm_model'], + stream=True, + temperature = llm_kwargs['temperature'] + ) + break + except Exception as e: + retry += 1 + traceback.print_exc() + if retry > MAX_RETRY: raise TimeoutError + if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……') + result = '' + try: + for completion in stream: + result += completion.completion + if not console_slience: print(completion.completion, end='') + if observe_window is not None: + # 观测窗,把已经获取的数据显示出去 + if len(observe_window) >= 1: observe_window[0] += completion.completion + # 看门狗,如果超过期限没有喂狗,则终止 + if len(observe_window) >= 2: + if (time.time()-observe_window[1]) > watch_dog_patience: + raise RuntimeError("用户取消了程序。") + except Exception as e: + traceback.print_exc() + + return result + + +def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None): + """ + 发送至chatGPT,流式获取输出。 + 用于基础的对话功能。 + inputs 是本次问询的输入 + top_p, temperature是chatGPT的内部调优参数 + history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误) + chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容 + additional_fn代表点击的哪个按钮,按钮见functional.py + """ + from anthropic import Anthropic + if len(ANTHROPIC_API_KEY) == 0: + chatbot.append((inputs, "没有设置ANTHROPIC_API_KEY")) + yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面 + return + + if additional_fn is not None: + import core_functional + importlib.reload(core_functional) # 热更新prompt + core_functional = core_functional.get_core_functions() + if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话) + inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"] + + raw_input = inputs + logging.info(f'[raw_input] {raw_input}') + chatbot.append((inputs, "")) + yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面 + + try: + prompt = generate_payload(inputs, llm_kwargs, history, system_prompt, stream) + except RuntimeError as e: + chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。") + yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面 + return + + history.append(inputs); history.append("") + + retry = 0 + while True: + try: + # make a POST request to the API endpoint, stream=True + from .bridge_all import model_info + anthropic = Anthropic(api_key=ANTHROPIC_API_KEY) + # endpoint = model_info[llm_kwargs['llm_model']]['endpoint'] + # with ProxyNetworkActivate() + stream = anthropic.completions.create( + prompt=prompt, + max_tokens_to_sample=4096, # The maximum number of tokens to generate before stopping. + model=llm_kwargs['llm_model'], + stream=True, + temperature = llm_kwargs['temperature'] + ) + + break + except: + retry += 1 + chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg)) + retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else "" + yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面 + if retry > MAX_RETRY: raise TimeoutError + + gpt_replying_buffer = "" + + for completion in stream: + try: + gpt_replying_buffer = gpt_replying_buffer + completion.completion + history[-1] = gpt_replying_buffer + chatbot[-1] = (history[-2], history[-1]) + yield from update_ui(chatbot=chatbot, history=history, msg='正常') # 刷新界面 + + except Exception as e: + from toolbox import regular_txt_to_markdown + tb_str = '```\n' + trimmed_format_exc() + '```' + chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str}") + yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + tb_str) # 刷新界面 + return + + + + +# https://github.com/jtsang4/claude-to-chatgpt/blob/main/claude_to_chatgpt/adapter.py +def convert_messages_to_prompt(messages): + prompt = "" + role_map = { + "system": "Human", + "user": "Human", + "assistant": "Assistant", + } + for message in messages: + role = message["role"] + content = message["content"] + transformed_role = role_map[role] + prompt += f"\n\n{transformed_role.capitalize()}: {content}" + prompt += "\n\nAssistant: " + return prompt + +def generate_payload(inputs, llm_kwargs, history, system_prompt, stream): + """ + 整合所有信息,选择LLM模型,生成http请求,为发送请求做准备 + """ + from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT + + conversation_cnt = len(history) // 2 + + messages = [{"role": "system", "content": system_prompt}] + if conversation_cnt: + for index in range(0, 2*conversation_cnt, 2): + what_i_have_asked = {} + what_i_have_asked["role"] = "user" + what_i_have_asked["content"] = history[index] + what_gpt_answer = {} + what_gpt_answer["role"] = "assistant" + what_gpt_answer["content"] = history[index+1] + if what_i_have_asked["content"] != "": + if what_gpt_answer["content"] == "": continue + if what_gpt_answer["content"] == timeout_bot_msg: continue + messages.append(what_i_have_asked) + messages.append(what_gpt_answer) + else: + messages[-1]['content'] = what_gpt_answer['content'] + + what_i_ask_now = {} + what_i_ask_now["role"] = "user" + what_i_ask_now["content"] = inputs + messages.append(what_i_ask_now) + prompt = convert_messages_to_prompt(messages) + + return prompt + + diff --git a/request_llm/test_llms.py b/request_llm/test_llms.py index ae6967b..5c9e9b3 100644 --- a/request_llm/test_llms.py +++ b/request_llm/test_llms.py @@ -10,10 +10,11 @@ def validate_path(): validate_path() # validate path so you can run from base directory if __name__ == "__main__": - from request_llm.bridge_newbingfree import predict_no_ui_long_connection + # from request_llm.bridge_newbingfree import predict_no_ui_long_connection # from request_llm.bridge_moss import predict_no_ui_long_connection # from request_llm.bridge_jittorllms_pangualpha import predict_no_ui_long_connection # from request_llm.bridge_jittorllms_llama import predict_no_ui_long_connection + from request_llm.bridge_claude import predict_no_ui_long_connection llm_kwargs = { 'max_length': 512, @@ -28,17 +29,6 @@ if __name__ == "__main__": print('final result:', result) - result = predict_no_ui_long_connection(inputs="what is a hero?", - llm_kwargs=llm_kwargs, - history=["hello world"], - sys_prompt="") - print('final result:', result) - - result = predict_no_ui_long_connection(inputs="如何理解传奇?", - llm_kwargs=llm_kwargs, - history=[], - sys_prompt="") - print('final result:', result) # # print(result) # from multiprocessing import Process, Pipe @@ -56,7 +46,6 @@ if __name__ == "__main__": # os.chdir(root_dir_assume + '/request_llm/jittorllms') # sys.path.append(root_dir_assume + '/request_llm/jittorllms') # validate_path() # validate path so you can run from base directory - # jittorllms_model = None # import types # try: @@ -70,7 +59,6 @@ if __name__ == "__main__": # except: # # self.child.send('[Local Message] Call jittorllms fail 不能正常加载jittorllms的参数。') # raise RuntimeError("不能正常加载jittorllms的参数!") - # x = GetGLMHandle() # x.start() diff --git a/requirements.txt b/requirements.txt index 8def763..e36441f 100644 --- a/requirements.txt +++ b/requirements.txt @@ -9,6 +9,7 @@ prompt_toolkit latex2mathml python-docx mdtex2html +anthropic colorama Markdown pygments