从当前对话历史中生产Mermaid图表的插件 (#1497)
* Add functionality to generate multiple types of Mermaid charts * Update conditional statement in 解析历史输入 function
This commit is contained in:
parent
d818c38dfe
commit
7b6828ab07
@ -34,6 +34,7 @@ def get_crazy_functions():
|
||||
from crazy_functions.Latex全文润色 import Latex英文纠错
|
||||
from crazy_functions.批量Markdown翻译 import Markdown中译英
|
||||
from crazy_functions.虚空终端 import 虚空终端
|
||||
from crazy_functions.生成多种Mermaid图表 import 生成多种Mermaid图表
|
||||
|
||||
function_plugins = {
|
||||
"虚空终端": {
|
||||
@ -69,6 +70,13 @@ def get_crazy_functions():
|
||||
"Info": "清除所有缓存文件,谨慎操作 | 不需要输入参数",
|
||||
"Function": HotReload(清除缓存),
|
||||
},
|
||||
"生成多种Mermaid图表(从当前对话内容中生产多种图表)": {
|
||||
"Group": "对话",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"Info" : "基于当前对话生成多种Mermaid图表,图表类型由对话模型自行判断",
|
||||
"Function": HotReload(生成多种Mermaid图表),
|
||||
},
|
||||
"批量总结Word文档": {
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
|
224
crazy_functions/生成多种Mermaid图表.py
Normal file
224
crazy_functions/生成多种Mermaid图表.py
Normal file
@ -0,0 +1,224 @@
|
||||
from toolbox import CatchException, update_ui
|
||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
import datetime
|
||||
|
||||
#暂时只写了这几种的PROMPT
|
||||
SELECT_PROMPT = """
|
||||
“{subject}”
|
||||
=============
|
||||
以上是从文章中提取的摘要,将会使用这些摘要绘制图表。请你选择一个合适的图表类型:
|
||||
1 流程图
|
||||
2 序列图
|
||||
3 类图
|
||||
4 饼图
|
||||
5 甘特图
|
||||
6 状态图
|
||||
7 实体关系图
|
||||
8 象限提示图
|
||||
不需要解释原因,仅需要输出单个不带任何标点符号的数字。
|
||||
"""
|
||||
#流程图
|
||||
PROMPT_1 = """
|
||||
请你给出围绕“{subject}”的逻辑关系图,使用mermaid语法,mermaid语法举例:
|
||||
```mermaid
|
||||
graph TD
|
||||
P(编程) --> L1(Python)
|
||||
P(编程) --> L2(C)
|
||||
P(编程) --> L3(C++)
|
||||
P(编程) --> L4(Javascipt)
|
||||
P(编程) --> L5(PHP)
|
||||
```
|
||||
"""
|
||||
#序列图
|
||||
PROMPT_2 = """
|
||||
请你给出围绕“{subject}”的序列图,使用mermaid语法,mermaid语法举例:
|
||||
```mermaid
|
||||
sequenceDiagram
|
||||
participant A as 用户
|
||||
participant B as 系统
|
||||
A->>B: 登录请求
|
||||
B->>A: 登录成功
|
||||
A->>B: 获取数据
|
||||
B->>A: 返回数据
|
||||
```
|
||||
"""
|
||||
#类图
|
||||
PROMPT_3 = """
|
||||
请你给出围绕“{subject}”的类图,使用mermaid语法,mermaid语法举例:
|
||||
```mermaid
|
||||
classDiagram
|
||||
Class01 <|-- AveryLongClass : Cool
|
||||
Class03 *-- Class04
|
||||
Class05 o-- Class06
|
||||
Class07 .. Class08
|
||||
Class09 --> C2 : Where am i?
|
||||
Class09 --* C3
|
||||
Class09 --|> Class07
|
||||
Class07 : equals()
|
||||
Class07 : Object[] elementData
|
||||
Class01 : size()
|
||||
Class01 : int chimp
|
||||
Class01 : int gorilla
|
||||
Class08 <--> C2: Cool label
|
||||
```
|
||||
"""
|
||||
#饼图
|
||||
PROMPT_4 = """
|
||||
请你给出围绕“{subject}”的饼图,使用mermaid语法,mermaid语法举例:
|
||||
```mermaid
|
||||
pie title Pets adopted by volunteers
|
||||
"狗" : 386
|
||||
"猫" : 85
|
||||
"兔子" : 15
|
||||
```
|
||||
"""
|
||||
#甘特图
|
||||
PROMPT_5 = """
|
||||
请你给出围绕“{subject}”的甘特图,使用mermaid语法,mermaid语法举例:
|
||||
```mermaid
|
||||
gantt
|
||||
title 项目开发流程
|
||||
dateFormat YYYY-MM-DD
|
||||
section 设计
|
||||
需求分析 :done, des1, 2024-01-06,2024-01-08
|
||||
原型设计 :active, des2, 2024-01-09, 3d
|
||||
UI设计 : des3, after des2, 5d
|
||||
section 开发
|
||||
前端开发 :2024-01-20, 10d
|
||||
后端开发 :2024-01-20, 10d
|
||||
```
|
||||
"""
|
||||
#状态图
|
||||
PROMPT_6 = """
|
||||
请你给出围绕“{subject}”的状态图,使用mermaid语法,mermaid语法举例:
|
||||
```mermaid
|
||||
stateDiagram-v2
|
||||
[*] --> Still
|
||||
Still --> [*]
|
||||
Still --> Moving
|
||||
Moving --> Still
|
||||
Moving --> Crash
|
||||
Crash --> [*]
|
||||
```
|
||||
"""
|
||||
#实体关系图
|
||||
PROMPT_7 = """
|
||||
请你给出围绕“{subject}”的实体关系图,使用mermaid语法,mermaid语法举例:
|
||||
```mermaid
|
||||
erDiagram
|
||||
CUSTOMER ||--o{ ORDER : places
|
||||
ORDER ||--|{ LINE-ITEM : contains
|
||||
CUSTOMER {
|
||||
string name
|
||||
string id
|
||||
}
|
||||
ORDER {
|
||||
string orderNumber
|
||||
date orderDate
|
||||
string customerID
|
||||
}
|
||||
LINE-ITEM {
|
||||
number quantity
|
||||
string productID
|
||||
}
|
||||
```
|
||||
"""
|
||||
#象限提示图
|
||||
PROMPT_8 = """
|
||||
请你给出围绕“{subject}”的象限图,使用mermaid语法,mermaid语法举例:
|
||||
```mermaid
|
||||
graph LR
|
||||
A[Hard skill] --> B(Programming)
|
||||
A[Hard skill] --> C(Design)
|
||||
D[Soft skill] --> E(Coordination)
|
||||
D[Soft skill] --> F(Communication)
|
||||
```
|
||||
"""
|
||||
|
||||
def 解析历史输入(history,llm_kwargs,chatbot):
|
||||
############################## <第 0 步,切割输入> ##################################
|
||||
# 借用PDF切割中的函数对文本进行切割
|
||||
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
||||
txt = str(history).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
||||
txt = breakdown_text_to_satisfy_token_limit(txt=txt, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
|
||||
############################## <第 1 步,迭代地历遍整个文章,提取精炼信息> ##################################
|
||||
i_say_show_user = f'首先你从历史记录中提取摘要。'; gpt_say = "[Local Message] 收到。" # 用户提示
|
||||
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=history) # 更新UI
|
||||
results = []
|
||||
MAX_WORD_TOTAL = 4096
|
||||
n_txt = len(txt)
|
||||
last_iteration_result = "从以下文本中提取摘要。"
|
||||
if n_txt >= 20: print('文章极长,不能达到预期效果')
|
||||
for i in range(n_txt):
|
||||
NUM_OF_WORD = MAX_WORD_TOTAL // n_txt
|
||||
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {txt[i]}"
|
||||
i_say_show_user = f"[{i+1}/{n_txt}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {txt[i][:200]} ...."
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
|
||||
llm_kwargs, chatbot,
|
||||
history=["The main content of the previous section is?", last_iteration_result], # 迭代上一次的结果
|
||||
sys_prompt="Extracts the main content from the text section where it is located for graphing purposes, answer me with Chinese." # 提示
|
||||
)
|
||||
results.append(gpt_say)
|
||||
last_iteration_result = gpt_say
|
||||
############################## <第 2 步,根据整理的摘要选择图表类型> ##################################
|
||||
i_say_show_user = f'接下来将判断适合的图表类型,如连续3次判断失败将会使用流程图进行绘制'; gpt_say = "[Local Message] 收到。" # 用户提示
|
||||
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=[]) # 更新UI
|
||||
results_txt = '\n'.join(results)
|
||||
i_say = SELECT_PROMPT.format(subject=results_txt)
|
||||
i_say_show_user = f'请判断适合使用的流程图类型,其中数字对应关系为:1-流程图,2-序列图,3-类图,4-饼图,5-甘特图,6-状态图,7-实体关系图,8-象限提示图'
|
||||
for i in range(3):
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say_show_user,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
sys_prompt=""
|
||||
)
|
||||
if gpt_say in ['1','2','3','4','5','6','7','8']: #判断返回是否正确
|
||||
break
|
||||
if gpt_say not in ['1','2','3','4','5','6','7','8']:
|
||||
gpt_say = '1'
|
||||
############################## <第 3 步,根据选择的图表类型绘制图表> ##################################
|
||||
if gpt_say == '1':
|
||||
i_say = PROMPT_1.format(subject=results_txt)
|
||||
elif gpt_say == '2':
|
||||
i_say = PROMPT_2.format(subject=results_txt)
|
||||
elif gpt_say == '3':
|
||||
i_say = PROMPT_3.format(subject=results_txt)
|
||||
elif gpt_say == '4':
|
||||
i_say = PROMPT_4.format(subject=results_txt)
|
||||
elif gpt_say == '5':
|
||||
i_say = PROMPT_5.format(subject=results_txt)
|
||||
elif gpt_say == '6':
|
||||
i_say = PROMPT_6.format(subject=results_txt)
|
||||
elif gpt_say == '7':
|
||||
i_say = PROMPT_7.format(subject=results_txt)
|
||||
elif gpt_say == '8':
|
||||
i_say = PROMPT_8.format(subject=results_txt)
|
||||
i_say_show_user = f'请根据判断结果绘制相应的图表。'
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say_show_user,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
sys_prompt=""
|
||||
)
|
||||
history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
@CatchException
|
||||
def 生成多种Mermaid图表(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,用于灵活调整复杂功能的各种参数
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
"""
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"根据当前聊天历史绘制多种mermaid图表的功能,将会首先判断适合的图表类型,随后绘制图表。函数插件贡献者: Menghuan1918"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
if txt == "": txt = "空白的输入栏" # :)虽然暂时没用到输入栏内容
|
||||
yield from 解析历史输入(history,llm_kwargs,chatbot)
|
Loading…
x
Reference in New Issue
Block a user