diff --git a/README.md b/README.md index 540e97d..3c551cf 100644 --- a/README.md +++ b/README.md @@ -27,7 +27,7 @@ To translate this project to arbitary language with GPT, read and run [`multi_la 功能(⭐= 近期新增功能) | 描述 --- | --- -⭐[接入新模型](https://github.com/binary-husky/gpt_academic/wiki/%E5%A6%82%E4%BD%95%E5%88%87%E6%8D%A2%E6%A8%A1%E5%9E%8B)! | ⭐阿里达摩院[通义千问](https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary),上海AI-Lab[书生](https://github.com/InternLM/InternLM),讯飞[星火](https://xinghuo.xfyun.cn/) +⭐[接入新模型](https://github.com/binary-husky/gpt_academic/wiki/%E5%A6%82%E4%BD%95%E5%88%87%E6%8D%A2%E6%A8%A1%E5%9E%8B)! | ⭐阿里达摩院[通义千问](https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary),上海AI-Lab[书生](https://github.com/InternLM/InternLM),讯飞[星火](https://xinghuo.xfyun.cn/),[LLaMa2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) 一键润色 | 支持一键润色、一键查找论文语法错误 一键中英互译 | 一键中英互译 一键代码解释 | 显示代码、解释代码、生成代码、给代码加注释 diff --git a/config.py b/config.py index a5ae33d..27d66f4 100644 --- a/config.py +++ b/config.py @@ -149,4 +149,8 @@ ANTHROPIC_API_KEY = "" # 自定义API KEY格式 -CUSTOM_API_KEY_PATTERN = "" \ No newline at end of file +CUSTOM_API_KEY_PATTERN = "" + + +# HUGGINGFACE的TOKEN 下载LLAMA时起作用 https://huggingface.co/docs/hub/security-tokens +HUGGINGFACE_ACCESS_TOKEN = "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" \ No newline at end of file diff --git a/request_llm/bridge_all.py b/request_llm/bridge_all.py index abec167..db26e52 100644 --- a/request_llm/bridge_all.py +++ b/request_llm/bridge_all.py @@ -385,6 +385,22 @@ if "spark" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型 }) except: print(trimmed_format_exc()) +if "llama2" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型 + try: + from .bridge_llama2 import predict_no_ui_long_connection as llama2_noui + from .bridge_llama2 import predict as llama2_ui + model_info.update({ + "llama2": { + "fn_with_ui": llama2_ui, + "fn_without_ui": llama2_noui, + "endpoint": None, + "max_token": 4096, + "tokenizer": tokenizer_gpt35, + "token_cnt": get_token_num_gpt35, + } + }) + except: + print(trimmed_format_exc()) diff --git a/request_llm/bridge_llama2.py b/request_llm/bridge_llama2.py new file mode 100644 index 0000000..e236c94 --- /dev/null +++ b/request_llm/bridge_llama2.py @@ -0,0 +1,91 @@ +model_name = "LLaMA" +cmd_to_install = "`pip install -r request_llm/requirements_chatglm.txt`" + + +from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer +from toolbox import update_ui, get_conf, ProxyNetworkActivate +from multiprocessing import Process, Pipe +from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns, SingletonLocalLLM +from threading import Thread + + +# ------------------------------------------------------------------------------------------------------------------------ +# 🔌💻 Local Model +# ------------------------------------------------------------------------------------------------------------------------ +@SingletonLocalLLM +class GetONNXGLMHandle(LocalLLMHandle): + + def load_model_info(self): + # 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行 + self.model_name = model_name + self.cmd_to_install = cmd_to_install + + def load_model_and_tokenizer(self): + # 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行 + import os, glob + import os + import platform + huggingface_token, device = get_conf('HUGGINGFACE_ACCESS_TOKEN', 'LOCAL_MODEL_DEVICE') + assert len(huggingface_token) != 0, "没有填写 HUGGINGFACE_ACCESS_TOKEN" + with open(os.path.expanduser('~/.cache/huggingface/token'), 'w') as f: + f.write(huggingface_token) + model_id = 'meta-llama/Llama-2-7b-chat-hf' + with ProxyNetworkActivate(): + self._tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=huggingface_token) + # use fp16 + model = AutoModelForCausalLM.from_pretrained(model_id, use_auth_token=huggingface_token).eval() + if device.startswith('cuda'): model = model.half().to(device) + self._model = model + + return self._model, self._tokenizer + + def llm_stream_generator(self, **kwargs): + # 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行 + def adaptor(kwargs): + query = kwargs['query'] + max_length = kwargs['max_length'] + top_p = kwargs['top_p'] + temperature = kwargs['temperature'] + history = kwargs['history'] + console_slience = kwargs.get('console_slience', True) + return query, max_length, top_p, temperature, history, console_slience + + def convert_messages_to_prompt(query, history): + prompt = "" + for a, b in history: + prompt += f"\n[INST]{a}[/INST]" + prompt += "\n{b}" + b + prompt += f"\n[INST]{query}[/INST]" + return prompt + + query, max_length, top_p, temperature, history, console_slience = adaptor(kwargs) + prompt = convert_messages_to_prompt(query, history) + # =-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=- + # code from transformers.llama + streamer = TextIteratorStreamer(self._tokenizer) + # Run the generation in a separate thread, so that we can fetch the generated text in a non-blocking way. + inputs = self._tokenizer([prompt], return_tensors="pt") + prompt_tk_back = self._tokenizer.batch_decode(inputs['input_ids'])[0] + + generation_kwargs = dict(inputs.to(self._model.device), streamer=streamer, max_new_tokens=max_length) + thread = Thread(target=self._model.generate, kwargs=generation_kwargs) + thread.start() + generated_text = "" + for new_text in streamer: + generated_text += new_text + if not console_slience: print(new_text, end='') + yield generated_text.lstrip(prompt_tk_back).rstrip("") + if not console_slience: print() + # =-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=- + + def try_to_import_special_deps(self, **kwargs): + # import something that will raise error if the user does not install requirement_*.txt + # 🏃‍♂️🏃‍♂️🏃‍♂️ 主进程执行 + import importlib + importlib.import_module('transformers') + + +# ------------------------------------------------------------------------------------------------------------------------ +# 🔌💻 GPT-Academic Interface +# ------------------------------------------------------------------------------------------------------------------------ +predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetONNXGLMHandle, model_name) \ No newline at end of file