Merge pull request #1014 from hongyi-zhao/master
Fix the reverse proxy based OpenAI access via https://github.com/acheong08/ChatGPT-to-API/.
This commit is contained in:
		
						commit
						aaf4f37403
					
				@ -351,6 +351,22 @@ if "qwen" in AVAIL_LLM_MODELS:
 | 
				
			|||||||
        })
 | 
					        })
 | 
				
			||||||
    except:
 | 
					    except:
 | 
				
			||||||
        print(trimmed_format_exc())
 | 
					        print(trimmed_format_exc())
 | 
				
			||||||
 | 
					if "chatgpt_website" in AVAIL_LLM_MODELS:   # 接入一些逆向工程https://github.com/acheong08/ChatGPT-to-API/
 | 
				
			||||||
 | 
					    try:
 | 
				
			||||||
 | 
					        from .bridge_chatgpt_website import predict_no_ui_long_connection as chatgpt_website_noui
 | 
				
			||||||
 | 
					        from .bridge_chatgpt_website import predict as chatgpt_website_ui
 | 
				
			||||||
 | 
					        model_info.update({
 | 
				
			||||||
 | 
					            "chatgpt_website": {
 | 
				
			||||||
 | 
					                "fn_with_ui": chatgpt_website_ui,
 | 
				
			||||||
 | 
					                "fn_without_ui": chatgpt_website_noui,
 | 
				
			||||||
 | 
					                "endpoint": None,
 | 
				
			||||||
 | 
					                "max_token": 4096,
 | 
				
			||||||
 | 
					                "tokenizer": tokenizer_gpt35,
 | 
				
			||||||
 | 
					                "token_cnt": get_token_num_gpt35,
 | 
				
			||||||
 | 
					            }
 | 
				
			||||||
 | 
					        })
 | 
				
			||||||
 | 
					    except:
 | 
				
			||||||
 | 
					        print(trimmed_format_exc())
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def LLM_CATCH_EXCEPTION(f):
 | 
					def LLM_CATCH_EXCEPTION(f):
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
 | 
				
			|||||||
							
								
								
									
										297
									
								
								request_llm/bridge_chatgpt_website.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										297
									
								
								request_llm/bridge_chatgpt_website.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,297 @@
 | 
				
			|||||||
 | 
					# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					"""
 | 
				
			||||||
 | 
					    该文件中主要包含三个函数
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    不具备多线程能力的函数:
 | 
				
			||||||
 | 
					    1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    具备多线程调用能力的函数
 | 
				
			||||||
 | 
					    2. predict_no_ui:高级实验性功能模块调用,不会实时显示在界面上,参数简单,可以多线程并行,方便实现复杂的功能逻辑
 | 
				
			||||||
 | 
					    3. predict_no_ui_long_connection:在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程
 | 
				
			||||||
 | 
					"""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import json
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					import gradio as gr
 | 
				
			||||||
 | 
					import logging
 | 
				
			||||||
 | 
					import traceback
 | 
				
			||||||
 | 
					import requests
 | 
				
			||||||
 | 
					import importlib
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# config_private.py放自己的秘密如API和代理网址
 | 
				
			||||||
 | 
					# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
 | 
				
			||||||
 | 
					from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc
 | 
				
			||||||
 | 
					proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG = \
 | 
				
			||||||
 | 
					    get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
 | 
				
			||||||
 | 
					                  '网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_full_error(chunk, stream_response):
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					        获取完整的从Openai返回的报错
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    while True:
 | 
				
			||||||
 | 
					        try:
 | 
				
			||||||
 | 
					            chunk += next(stream_response)
 | 
				
			||||||
 | 
					        except:
 | 
				
			||||||
 | 
					            break
 | 
				
			||||||
 | 
					    return chunk
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
 | 
				
			||||||
 | 
					    inputs:
 | 
				
			||||||
 | 
					        是本次问询的输入
 | 
				
			||||||
 | 
					    sys_prompt:
 | 
				
			||||||
 | 
					        系统静默prompt
 | 
				
			||||||
 | 
					    llm_kwargs:
 | 
				
			||||||
 | 
					        chatGPT的内部调优参数
 | 
				
			||||||
 | 
					    history:
 | 
				
			||||||
 | 
					        是之前的对话列表
 | 
				
			||||||
 | 
					    observe_window = None:
 | 
				
			||||||
 | 
					        用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
 | 
				
			||||||
 | 
					    headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
 | 
				
			||||||
 | 
					    retry = 0
 | 
				
			||||||
 | 
					    while True:
 | 
				
			||||||
 | 
					        try:
 | 
				
			||||||
 | 
					            # make a POST request to the API endpoint, stream=False
 | 
				
			||||||
 | 
					            from .bridge_all import model_info
 | 
				
			||||||
 | 
					            endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
 | 
				
			||||||
 | 
					            response = requests.post(endpoint, headers=headers, proxies=proxies,
 | 
				
			||||||
 | 
					                                    json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
 | 
				
			||||||
 | 
					        except requests.exceptions.ReadTimeout as e:
 | 
				
			||||||
 | 
					            retry += 1
 | 
				
			||||||
 | 
					            traceback.print_exc()
 | 
				
			||||||
 | 
					            if retry > MAX_RETRY: raise TimeoutError
 | 
				
			||||||
 | 
					            if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    stream_response =  response.iter_lines()
 | 
				
			||||||
 | 
					    result = ''
 | 
				
			||||||
 | 
					    while True:
 | 
				
			||||||
 | 
					        try: chunk = next(stream_response).decode()
 | 
				
			||||||
 | 
					        except StopIteration: 
 | 
				
			||||||
 | 
					            break
 | 
				
			||||||
 | 
					        except requests.exceptions.ConnectionError:
 | 
				
			||||||
 | 
					            chunk = next(stream_response).decode() # 失败了,重试一次?再失败就没办法了。
 | 
				
			||||||
 | 
					        if len(chunk)==0: continue
 | 
				
			||||||
 | 
					        if not chunk.startswith('data:'): 
 | 
				
			||||||
 | 
					            error_msg = get_full_error(chunk.encode('utf8'), stream_response).decode()
 | 
				
			||||||
 | 
					            if "reduce the length" in error_msg:
 | 
				
			||||||
 | 
					                raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                raise RuntimeError("OpenAI拒绝了请求:" + error_msg)
 | 
				
			||||||
 | 
					        if ('data: [DONE]' in chunk): break # api2d 正常完成
 | 
				
			||||||
 | 
					        json_data = json.loads(chunk.lstrip('data:'))['choices'][0]
 | 
				
			||||||
 | 
					        delta = json_data["delta"]
 | 
				
			||||||
 | 
					        if len(delta) == 0: break
 | 
				
			||||||
 | 
					        if "role" in delta: continue
 | 
				
			||||||
 | 
					        if "content" in delta: 
 | 
				
			||||||
 | 
					            result += delta["content"]
 | 
				
			||||||
 | 
					            if not console_slience: print(delta["content"], end='')
 | 
				
			||||||
 | 
					            if observe_window is not None: 
 | 
				
			||||||
 | 
					                # 观测窗,把已经获取的数据显示出去
 | 
				
			||||||
 | 
					                if len(observe_window) >= 1: observe_window[0] += delta["content"]
 | 
				
			||||||
 | 
					                # 看门狗,如果超过期限没有喂狗,则终止
 | 
				
			||||||
 | 
					                if len(observe_window) >= 2:  
 | 
				
			||||||
 | 
					                    if (time.time()-observe_window[1]) > watch_dog_patience:
 | 
				
			||||||
 | 
					                        raise RuntimeError("用户取消了程序。")
 | 
				
			||||||
 | 
					        else: raise RuntimeError("意外Json结构:"+delta)
 | 
				
			||||||
 | 
					    if json_data['finish_reason'] == 'content_filter':
 | 
				
			||||||
 | 
					        raise RuntimeError("由于提问含不合规内容被Azure过滤。")
 | 
				
			||||||
 | 
					    if json_data['finish_reason'] == 'length':
 | 
				
			||||||
 | 
					        raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
 | 
				
			||||||
 | 
					    return result
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    发送至chatGPT,流式获取输出。
 | 
				
			||||||
 | 
					    用于基础的对话功能。
 | 
				
			||||||
 | 
					    inputs 是本次问询的输入
 | 
				
			||||||
 | 
					    top_p, temperature是chatGPT的内部调优参数
 | 
				
			||||||
 | 
					    history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
 | 
				
			||||||
 | 
					    chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
 | 
				
			||||||
 | 
					    additional_fn代表点击的哪个按钮,按钮见functional.py
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    if is_any_api_key(inputs):
 | 
				
			||||||
 | 
					        chatbot._cookies['api_key'] = inputs
 | 
				
			||||||
 | 
					        chatbot.append(("输入已识别为openai的api_key", what_keys(inputs)))
 | 
				
			||||||
 | 
					        yield from update_ui(chatbot=chatbot, history=history, msg="api_key已导入") # 刷新界面
 | 
				
			||||||
 | 
					        return
 | 
				
			||||||
 | 
					    elif not is_any_api_key(chatbot._cookies['api_key']):
 | 
				
			||||||
 | 
					        chatbot.append((inputs, "缺少api_key。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。"))
 | 
				
			||||||
 | 
					        yield from update_ui(chatbot=chatbot, history=history, msg="缺少api_key") # 刷新界面
 | 
				
			||||||
 | 
					        return
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if additional_fn is not None:
 | 
				
			||||||
 | 
					        from core_functional import handle_core_functionality
 | 
				
			||||||
 | 
					        inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    raw_input = inputs
 | 
				
			||||||
 | 
					    logging.info(f'[raw_input] {raw_input}')
 | 
				
			||||||
 | 
					    chatbot.append((inputs, ""))
 | 
				
			||||||
 | 
					    yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    try:
 | 
				
			||||||
 | 
					        headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
 | 
				
			||||||
 | 
					    except RuntimeError as e:
 | 
				
			||||||
 | 
					        chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
 | 
				
			||||||
 | 
					        yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
 | 
				
			||||||
 | 
					        return
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					    history.append(inputs); history.append("")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    retry = 0
 | 
				
			||||||
 | 
					    while True:
 | 
				
			||||||
 | 
					        try:
 | 
				
			||||||
 | 
					            # make a POST request to the API endpoint, stream=True
 | 
				
			||||||
 | 
					            from .bridge_all import model_info
 | 
				
			||||||
 | 
					            endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
 | 
				
			||||||
 | 
					            response = requests.post(endpoint, headers=headers, proxies=proxies,
 | 
				
			||||||
 | 
					                                    json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
 | 
				
			||||||
 | 
					        except:
 | 
				
			||||||
 | 
					            retry += 1
 | 
				
			||||||
 | 
					            chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
 | 
				
			||||||
 | 
					            retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
 | 
				
			||||||
 | 
					            yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
 | 
				
			||||||
 | 
					            if retry > MAX_RETRY: raise TimeoutError
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    gpt_replying_buffer = ""
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    is_head_of_the_stream = True
 | 
				
			||||||
 | 
					    if stream:
 | 
				
			||||||
 | 
					        stream_response =  response.iter_lines()
 | 
				
			||||||
 | 
					        while True:
 | 
				
			||||||
 | 
					            try:
 | 
				
			||||||
 | 
					                chunk = next(stream_response)
 | 
				
			||||||
 | 
					            except StopIteration:
 | 
				
			||||||
 | 
					                # 非OpenAI官方接口的出现这样的报错,OpenAI和API2D不会走这里
 | 
				
			||||||
 | 
					                chunk_decoded = chunk.decode()
 | 
				
			||||||
 | 
					                error_msg = chunk_decoded
 | 
				
			||||||
 | 
					                chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
 | 
				
			||||||
 | 
					                yield from update_ui(chatbot=chatbot, history=history, msg="非Openai官方接口返回了错误:" + chunk.decode()) # 刷新界面
 | 
				
			||||||
 | 
					                return
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            # print(chunk.decode()[6:])
 | 
				
			||||||
 | 
					            if is_head_of_the_stream and (r'"object":"error"' not in chunk.decode()):
 | 
				
			||||||
 | 
					                # 数据流的第一帧不携带content
 | 
				
			||||||
 | 
					                is_head_of_the_stream = False; continue
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            if chunk:
 | 
				
			||||||
 | 
					                try:
 | 
				
			||||||
 | 
					                    chunk_decoded = chunk.decode()
 | 
				
			||||||
 | 
					                    # 前者是API2D的结束条件,后者是OPENAI的结束条件
 | 
				
			||||||
 | 
					                    if 'data: [DONE]' in chunk_decoded:
 | 
				
			||||||
 | 
					                        # 判定为数据流的结束,gpt_replying_buffer也写完了
 | 
				
			||||||
 | 
					                        logging.info(f'[response] {gpt_replying_buffer}')
 | 
				
			||||||
 | 
					                        break
 | 
				
			||||||
 | 
					                    # 处理数据流的主体
 | 
				
			||||||
 | 
					                    chunkjson = json.loads(chunk_decoded[6:])
 | 
				
			||||||
 | 
					                    status_text = f"finish_reason: {chunkjson['choices'][0]['finish_reason']}"
 | 
				
			||||||
 | 
					                    delta = chunkjson['choices'][0]["delta"]
 | 
				
			||||||
 | 
					                    if "content" in delta:
 | 
				
			||||||
 | 
					                        gpt_replying_buffer = gpt_replying_buffer + delta["content"]
 | 
				
			||||||
 | 
					                    history[-1] = gpt_replying_buffer
 | 
				
			||||||
 | 
					                    chatbot[-1] = (history[-2], history[-1])
 | 
				
			||||||
 | 
					                    yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
 | 
				
			||||||
 | 
					                except Exception as e:
 | 
				
			||||||
 | 
					                    yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
 | 
				
			||||||
 | 
					                    chunk = get_full_error(chunk, stream_response)
 | 
				
			||||||
 | 
					                    chunk_decoded = chunk.decode()
 | 
				
			||||||
 | 
					                    error_msg = chunk_decoded
 | 
				
			||||||
 | 
					                    chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
 | 
				
			||||||
 | 
					                    yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
 | 
				
			||||||
 | 
					                    print(error_msg)
 | 
				
			||||||
 | 
					                    return
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
 | 
				
			||||||
 | 
					    from .bridge_all import model_info
 | 
				
			||||||
 | 
					    openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
 | 
				
			||||||
 | 
					    if "reduce the length" in error_msg:
 | 
				
			||||||
 | 
					        if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
 | 
				
			||||||
 | 
					        history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'], 
 | 
				
			||||||
 | 
					                                               max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
 | 
				
			||||||
 | 
					        chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
 | 
				
			||||||
 | 
					                        # history = []    # 清除历史
 | 
				
			||||||
 | 
					    elif "does not exist" in error_msg:
 | 
				
			||||||
 | 
					        chatbot[-1] = (chatbot[-1][0], f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格.")
 | 
				
			||||||
 | 
					    elif "Incorrect API key" in error_msg:
 | 
				
			||||||
 | 
					        chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由, 拒绝服务. " + openai_website)
 | 
				
			||||||
 | 
					    elif "exceeded your current quota" in error_msg:
 | 
				
			||||||
 | 
					        chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由, 拒绝服务." + openai_website)
 | 
				
			||||||
 | 
					    elif "account is not active" in error_msg:
 | 
				
			||||||
 | 
					        chatbot[-1] = (chatbot[-1][0], "[Local Message] Your account is not active. OpenAI以账户失效为由, 拒绝服务." + openai_website)
 | 
				
			||||||
 | 
					    elif "associated with a deactivated account" in error_msg:
 | 
				
			||||||
 | 
					        chatbot[-1] = (chatbot[-1][0], "[Local Message] You are associated with a deactivated account. OpenAI以账户失效为由, 拒绝服务." + openai_website)
 | 
				
			||||||
 | 
					    elif "bad forward key" in error_msg:
 | 
				
			||||||
 | 
					        chatbot[-1] = (chatbot[-1][0], "[Local Message] Bad forward key. API2D账户额度不足.")
 | 
				
			||||||
 | 
					    elif "Not enough point" in error_msg:
 | 
				
			||||||
 | 
					        chatbot[-1] = (chatbot[-1][0], "[Local Message] Not enough point. API2D账户点数不足.")
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        from toolbox import regular_txt_to_markdown
 | 
				
			||||||
 | 
					        tb_str = '```\n' + trimmed_format_exc() + '```'
 | 
				
			||||||
 | 
					        chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
 | 
				
			||||||
 | 
					    return chatbot, history
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    if not is_any_api_key(llm_kwargs['api_key']):
 | 
				
			||||||
 | 
					        raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    headers = {
 | 
				
			||||||
 | 
					        "Content-Type": "application/json",
 | 
				
			||||||
 | 
					        "Authorization": f"Bearer {api_key}"
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    if API_ORG.startswith('org-'): headers.update({"OpenAI-Organization": API_ORG})
 | 
				
			||||||
 | 
					    if llm_kwargs['llm_model'].startswith('azure-'): headers.update({"api-key": api_key})
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    conversation_cnt = len(history) // 2
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    messages = [{"role": "system", "content": system_prompt}]
 | 
				
			||||||
 | 
					    if conversation_cnt:
 | 
				
			||||||
 | 
					        for index in range(0, 2*conversation_cnt, 2):
 | 
				
			||||||
 | 
					            what_i_have_asked = {}
 | 
				
			||||||
 | 
					            what_i_have_asked["role"] = "user"
 | 
				
			||||||
 | 
					            what_i_have_asked["content"] = history[index]
 | 
				
			||||||
 | 
					            what_gpt_answer = {}
 | 
				
			||||||
 | 
					            what_gpt_answer["role"] = "assistant"
 | 
				
			||||||
 | 
					            what_gpt_answer["content"] = history[index+1]
 | 
				
			||||||
 | 
					            if what_i_have_asked["content"] != "":
 | 
				
			||||||
 | 
					                if what_gpt_answer["content"] == "": continue
 | 
				
			||||||
 | 
					                if what_gpt_answer["content"] == timeout_bot_msg: continue
 | 
				
			||||||
 | 
					                messages.append(what_i_have_asked)
 | 
				
			||||||
 | 
					                messages.append(what_gpt_answer)
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                messages[-1]['content'] = what_gpt_answer['content']
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    what_i_ask_now = {}
 | 
				
			||||||
 | 
					    what_i_ask_now["role"] = "user"
 | 
				
			||||||
 | 
					    what_i_ask_now["content"] = inputs
 | 
				
			||||||
 | 
					    messages.append(what_i_ask_now)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    payload = {
 | 
				
			||||||
 | 
					        "model": llm_kwargs['llm_model'].strip('api2d-'),
 | 
				
			||||||
 | 
					        "messages": messages, 
 | 
				
			||||||
 | 
					        "temperature": llm_kwargs['temperature'],  # 1.0,
 | 
				
			||||||
 | 
					        "top_p": llm_kwargs['top_p'],  # 1.0,
 | 
				
			||||||
 | 
					        "n": 1,
 | 
				
			||||||
 | 
					        "stream": stream,
 | 
				
			||||||
 | 
					        "presence_penalty": 0,
 | 
				
			||||||
 | 
					        "frequency_penalty": 0,
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    try:
 | 
				
			||||||
 | 
					        print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
 | 
				
			||||||
 | 
					    except:
 | 
				
			||||||
 | 
					        print('输入中可能存在乱码。')
 | 
				
			||||||
 | 
					    return headers,payload
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user