移动函数到调用模组

This commit is contained in:
Your Name 2023-03-31 21:46:47 +08:00
parent ecebdf3ab5
commit ac681d3201
2 changed files with 55 additions and 57 deletions

View File

@ -1,7 +1,61 @@
from predict import predict_no_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down, clean_text
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
import re
import unicodedata
fast_debug = False
def is_paragraph_break(match):
"""
根据给定的匹配结果来判断换行符是否表示段落分隔
如果换行符前为句子结束标志句号感叹号问号且下一个字符为大写字母则换行符更有可能表示段落分隔
也可以根据之前的内容长度来判断段落是否已经足够长
"""
prev_char, next_char = match.groups()
# 句子结束标志
sentence_endings = ".!?"
# 设定一个最小段落长度阈值
min_paragraph_length = 140
if prev_char in sentence_endings and next_char.isupper() and len(match.string[:match.start(1)]) > min_paragraph_length:
return "\n\n"
else:
return " "
def normalize_text(text):
"""
通过把连字ligatures等文本特殊符号转换为其基本形式来对文本进行归一化处理
例如将连字 "fi" 转换为 "f" "i"
"""
# 对文本进行归一化处理,分解连字
normalized_text = unicodedata.normalize("NFKD", text)
# 替换其他特殊字符
cleaned_text = re.sub(r'[^\x00-\x7F]+', '', normalized_text)
return cleaned_text
def clean_text(raw_text):
"""
对从 PDF 提取出的原始文本进行清洗和格式化处理
1. 对原始文本进行归一化处理
2. 替换跨行的连词例如 Espe-\ncially 转换为 Especially
3. 根据 heuristic 规则判断换行符是否是段落分隔并相应地进行替换
"""
# 对文本进行归一化处理
normalized_text = normalize_text(raw_text)
# 替换跨行的连词
text = re.sub(r'(\w+-\n\w+)', lambda m: m.group(1).replace('-\n', ''), normalized_text)
# 根据前后相邻字符的特点,找到原文本中的换行符
newlines = re.compile(r'(\S)\n(\S)')
# 根据 heuristic 规则,用空格或段落分隔符替换原换行符
final_text = re.sub(newlines, lambda m: m.group(1) + is_paragraph_break(m) + m.group(2), text)
return final_text.strip()
def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
import time, glob, os, fitz

View File

@ -280,59 +280,3 @@ def clear_line_break(txt):
txt = txt.replace(' ', ' ')
txt = txt.replace(' ', ' ')
return txt
import re
import unicodedata
def is_paragraph_break(match):
"""
根据给定的匹配结果来判断换行符是否表示段落分隔
如果换行符前为句子结束标志句号感叹号问号且下一个字符为大写字母则换行符更有可能表示段落分隔
也可以根据之前的内容长度来判断段落是否已经足够长
"""
prev_char, next_char = match.groups()
# 句子结束标志
sentence_endings = ".!?"
# 设定一个最小段落长度阈值
min_paragraph_length = 140
if prev_char in sentence_endings and next_char.isupper() and len(match.string[:match.start(1)]) > min_paragraph_length:
return "\n\n"
else:
return " "
def normalize_text(text):
"""
通过把连字ligatures等文本特殊符号转换为其基本形式来对文本进行归一化处理
例如将连字 "fi" 转换为 "f" "i"
"""
# 对文本进行归一化处理,分解连字
normalized_text = unicodedata.normalize("NFKD", text)
# 替换其他特殊字符
cleaned_text = re.sub(r'[^\x00-\x7F]+', '', normalized_text)
return cleaned_text
def clean_text(raw_text):
"""
对从 PDF 提取出的原始文本进行清洗和格式化处理
1. 对原始文本进行归一化处理
2. 替换跨行的连词例如 Espe-\ncially 转换为 Especially
3. 根据 heuristic 规则判断换行符是否是段落分隔并相应地进行替换
"""
# 对文本进行归一化处理
normalized_text = normalize_text(raw_text)
# 替换跨行的连词
text = re.sub(r'(\w+-\n\w+)', lambda m: m.group(1).replace('-\n', ''), normalized_text)
# 根据前后相邻字符的特点,找到原文本中的换行符
newlines = re.compile(r'(\S)\n(\S)')
# 根据 heuristic 规则,用空格或段落分隔符替换原换行符
final_text = re.sub(newlines, lambda m: m.group(1) + is_paragraph_break(m) + m.group(2), text)
return final_text.strip()