diff --git a/config.py b/config.py
index 75e0b90..4aab6cc 100644
--- a/config.py
+++ b/config.py
@@ -45,7 +45,7 @@ AVAIL_LLM_MODELS = ["gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-p
# "qwen-turbo", "qwen-plus", "qwen-max", "qwen-local",
# "moonshot-v1-128k", "moonshot-v1-32k", "moonshot-v1-8k",
# "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0125"
-# "claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2",
+# "claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2",
# "moss", "llama2", "chatglm_onnx", "internlm", "jittorllms_pangualpha", "jittorllms_llama",
# "yi-34b-chat-0205", "yi-34b-chat-200k"
# ]
@@ -157,7 +157,8 @@ ADD_WAIFU = False
AUTHENTICATION = []
-# 如果需要在二级路径下运行(常规情况下,不要修改!!)(需要配合修改main.py才能生效!)
+# 如果需要在二级路径下运行(常规情况下,不要修改!!)
+# (举例 CUSTOM_PATH = "/gpt_academic",可以让软件运行在 http://ip:port/gpt_academic/ 下。)
CUSTOM_PATH = "/"
@@ -377,4 +378,4 @@ NUM_CUSTOM_BASIC_BTN = 4
└── MATHPIX_APPKEY
-"""
\ No newline at end of file
+"""
diff --git a/main.py b/main.py
index 08ec61b..23c02d3 100644
--- a/main.py
+++ b/main.py
@@ -13,6 +13,17 @@ help_menu_description = \
如何语音对话: 请阅读Wiki
如何临时更换API_KEY: 在输入区输入临时API_KEY后提交(网页刷新后失效)"""
+def enable_log(PATH_LOGGING):
+ import logging, uuid
+ admin_log_path = os.path.join(PATH_LOGGING, "admin")
+ os.makedirs(admin_log_path, exist_ok=True)
+ log_dir = os.path.join(admin_log_path, "chat_secrets.log")
+ try:logging.basicConfig(filename=log_dir, level=logging.INFO, encoding="utf-8", format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
+ except:logging.basicConfig(filename=log_dir, level=logging.INFO, format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
+ # Disable logging output from the 'httpx' logger
+ logging.getLogger("httpx").setLevel(logging.WARNING)
+ print(f"所有对话记录将自动保存在本地目录{log_dir}, 请注意自我隐私保护哦!")
+
def main():
import gradio as gr
if gr.__version__ not in ['3.32.9']:
@@ -31,18 +42,11 @@ def main():
from check_proxy import get_current_version
from themes.theme import adjust_theme, advanced_css, theme_declaration, js_code_clear, js_code_reset, js_code_show_or_hide, js_code_show_or_hide_group2
from themes.theme import js_code_for_css_changing, js_code_for_toggle_darkmode, js_code_for_persistent_cookie_init
- from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, init_cookie
+ from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, assign_user_uuid
title_html = f"
GPT 学术优化 {get_current_version()}
{theme_declaration}"
- # 对话记录, python 版本建议3.9+(越新越好)
- import logging, uuid
- os.makedirs(PATH_LOGGING, exist_ok=True)
- chat_secrets_log = os.path.join(PATH_LOGGING, "chat_secrets.log")
- try:logging.basicConfig(filename=chat_secrets_log, level=logging.INFO, encoding="utf-8", format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
- except:logging.basicConfig(filename=chat_secrets_log, level=logging.INFO, format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
- # Disable logging output from the 'httpx' logger
- logging.getLogger("httpx").setLevel(logging.WARNING)
- print(f"所有对话记录将自动保存在本地目录 {chat_secrets_log}, 请注意自我隐私保护哦!")
+ # 对话、日志记录
+ enable_log(PATH_LOGGING)
# 一些普通功能模块
from core_functional import get_core_functions
@@ -75,9 +79,9 @@ def main():
cancel_handles = []
customize_btns = {}
predefined_btns = {}
- with gr.Blocks(title="GPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
+ with gr.Blocks(title="GPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as app_block:
gr.HTML(title_html)
- secret_css, py_pickle_cookie = gr.Textbox(visible=False), gr.Textbox(visible=False)
+ secret_css, web_cookie_cache = gr.Textbox(visible=False), gr.Textbox(visible=False)
cookies = gr.State(load_chat_cookies())
with gr_L1():
with gr_L2(scale=2, elem_id="gpt-chat"):
@@ -199,64 +203,19 @@ def main():
with gr.Column(scale=1, min_width=70):
basic_fn_confirm = gr.Button("确认并保存", variant="primary"); basic_fn_confirm.style(size="sm")
basic_fn_clean = gr.Button("恢复默认", variant="primary"); basic_fn_clean.style(size="sm")
- def assign_btn(persistent_cookie_, cookies_, basic_btn_dropdown_, basic_fn_title, basic_fn_prefix, basic_fn_suffix, clean_up=False):
- ret = {}
- # 读取之前的自定义按钮
- customize_fn_overwrite_ = cookies_['customize_fn_overwrite']
- # 更新新的自定义按钮
- customize_fn_overwrite_.update({
- basic_btn_dropdown_:
- {
- "Title":basic_fn_title,
- "Prefix":basic_fn_prefix,
- "Suffix":basic_fn_suffix,
- }
- }
- )
- if clean_up:
- customize_fn_overwrite_ = {}
- cookies_.update(customize_fn_overwrite_) # 更新cookie
- visible = (not clean_up) and (basic_fn_title != "")
- if basic_btn_dropdown_ in customize_btns:
- # 是自定义按钮,不是预定义按钮
- ret.update({customize_btns[basic_btn_dropdown_]: gr.update(visible=visible, value=basic_fn_title)})
- else:
- # 是预定义按钮
- ret.update({predefined_btns[basic_btn_dropdown_]: gr.update(visible=visible, value=basic_fn_title)})
- ret.update({cookies: cookies_})
- try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
- except: persistent_cookie_ = {}
- persistent_cookie_["custom_bnt"] = customize_fn_overwrite_ # dict update new value
- persistent_cookie_ = to_cookie_str(persistent_cookie_) # persistent cookie to dict
- ret.update({py_pickle_cookie: persistent_cookie_}) # write persistent cookie
- return ret
+ from shared_utils.cookie_manager import assign_btn__fn_builder
+ assign_btn = assign_btn__fn_builder(customize_btns, predefined_btns, cookies, web_cookie_cache)
# update btn
- h = basic_fn_confirm.click(assign_btn, [py_pickle_cookie, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix],
- [py_pickle_cookie, cookies, *customize_btns.values(), *predefined_btns.values()])
- h.then(None, [py_pickle_cookie], None, _js="""(py_pickle_cookie)=>{setCookie("py_pickle_cookie", py_pickle_cookie, 365);}""")
+ h = basic_fn_confirm.click(assign_btn, [web_cookie_cache, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix],
+ [web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()])
+ h.then(None, [web_cookie_cache], None, _js="""(web_cookie_cache)=>{setCookie("web_cookie_cache", web_cookie_cache, 365);}""")
# clean up btn
- h2 = basic_fn_clean.click(assign_btn, [py_pickle_cookie, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix, gr.State(True)],
- [py_pickle_cookie, cookies, *customize_btns.values(), *predefined_btns.values()])
- h2.then(None, [py_pickle_cookie], None, _js="""(py_pickle_cookie)=>{setCookie("py_pickle_cookie", py_pickle_cookie, 365);}""")
+ h2 = basic_fn_clean.click(assign_btn, [web_cookie_cache, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix, gr.State(True)],
+ [web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()])
+ h2.then(None, [web_cookie_cache], None, _js="""(web_cookie_cache)=>{setCookie("web_cookie_cache", web_cookie_cache, 365);}""")
- def persistent_cookie_reload(persistent_cookie_, cookies_):
- ret = {}
- for k in customize_btns:
- ret.update({customize_btns[k]: gr.update(visible=False, value="")})
- try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
- except: return ret
-
- customize_fn_overwrite_ = persistent_cookie_.get("custom_bnt", {})
- cookies_['customize_fn_overwrite'] = customize_fn_overwrite_
- ret.update({cookies: cookies_})
-
- for k,v in persistent_cookie_["custom_bnt"].items():
- if v['Title'] == "": continue
- if k in customize_btns: ret.update({customize_btns[k]: gr.update(visible=True, value=v['Title'])})
- else: ret.update({predefined_btns[k]: gr.update(visible=True, value=v['Title'])})
- return ret
# 功能区显示开关与功能区的互动
def fn_area_visibility(a):
@@ -376,11 +335,14 @@ def main():
audio_mic.stream(deal_audio, inputs=[audio_mic, cookies])
- demo.load(init_cookie, inputs=[cookies], outputs=[cookies])
- demo.load(persistent_cookie_reload, inputs = [py_pickle_cookie, cookies],
- outputs = [py_pickle_cookie, cookies, *customize_btns.values(), *predefined_btns.values()], _js=js_code_for_persistent_cookie_init)
- demo.load(None, inputs=[], outputs=None, _js=f"""()=>init_frontend_with_cookies("{DARK_MODE}","{INIT_SYS_PROMPT}","{ADD_WAIFU}")""") # 配置暗色主题或亮色主题
- demo.load(None, inputs=[gr.Textbox(LAYOUT, visible=False)], outputs=None, _js='(LAYOUT)=>{GptAcademicJavaScriptInit(LAYOUT);}')
+ app_block.load(assign_user_uuid, inputs=[cookies], outputs=[cookies])
+
+ from shared_utils.cookie_manager import load_web_cookie_cache__fn_builder
+ load_web_cookie_cache = load_web_cookie_cache__fn_builder(customize_btns, cookies, predefined_btns)
+ app_block.load(load_web_cookie_cache, inputs = [web_cookie_cache, cookies],
+ outputs = [web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()], _js=js_code_for_persistent_cookie_init)
+
+ app_block.load(None, inputs=[], outputs=None, _js=f"""()=>GptAcademicJavaScriptInit("{DARK_MODE}","{INIT_SYS_PROMPT}","{ADD_WAIFU}","{LAYOUT}")""") # 配置暗色主题或亮色主题
# gradio的inbrowser触发不太稳定,回滚代码到原始的浏览器打开函数
def run_delayed_tasks():
@@ -395,19 +357,15 @@ def main():
threading.Thread(target=auto_updates, name="self-upgrade", daemon=True).start() # 查看自动更新
threading.Thread(target=open_browser, name="open-browser", daemon=True).start() # 打开浏览器页面
- threading.Thread(target=warm_up_mods, name="warm-up", daemon=True).start() # 预热tiktoken模块
+ threading.Thread(target=warm_up_mods, name="warm-up", daemon=True).start() # 预热tiktoken模块
+ # 运行一些异步任务:自动更新、打开浏览器页面、预热tiktoken模块
run_delayed_tasks()
- demo.queue(concurrency_count=CONCURRENT_COUNT).launch(
- quiet=True,
- server_name="0.0.0.0",
- ssl_keyfile=None if SSL_KEYFILE == "" else SSL_KEYFILE,
- ssl_certfile=None if SSL_CERTFILE == "" else SSL_CERTFILE,
- ssl_verify=False,
- server_port=PORT,
- favicon_path=os.path.join(os.path.dirname(__file__), "docs/logo.png"),
- auth=AUTHENTICATION if len(AUTHENTICATION) != 0 else None,
- blocked_paths=["config.py","__pycache__","config_private.py","docker-compose.yml","Dockerfile",f"{PATH_LOGGING}/admin", chat_secrets_log])
+
+ # 最后,正式开始服务
+ from shared_utils.fastapi_server import start_app
+ start_app(app_block, CONCURRENT_COUNT, AUTHENTICATION, PORT, SSL_KEYFILE, SSL_CERTFILE)
+
if __name__ == "__main__":
main()
diff --git a/request_llms/bridge_all.py b/request_llms/bridge_all.py
index deee1c7..eabecd8 100644
--- a/request_llms/bridge_all.py
+++ b/request_llms/bridge_all.py
@@ -34,6 +34,9 @@ from .bridge_google_gemini import predict_no_ui_long_connection as genai_noui
from .bridge_zhipu import predict_no_ui_long_connection as zhipu_noui
from .bridge_zhipu import predict as zhipu_ui
+from .bridge_cohere import predict as cohere_ui
+from .bridge_cohere import predict_no_ui_long_connection as cohere_noui
+
colors = ['#FF00FF', '#00FFFF', '#FF0000', '#990099', '#009999', '#990044']
class LazyloadTiktoken(object):
@@ -64,6 +67,7 @@ newbing_endpoint = "wss://sydney.bing.com/sydney/ChatHub"
gemini_endpoint = "https://generativelanguage.googleapis.com/v1beta/models"
claude_endpoint = "https://api.anthropic.com/v1/messages"
yimodel_endpoint = "https://api.lingyiwanwu.com/v1/chat/completions"
+cohere_endpoint = 'https://api.cohere.ai/v1/chat'
if not AZURE_ENDPOINT.endswith('/'): AZURE_ENDPOINT += '/'
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
@@ -82,6 +86,7 @@ if newbing_endpoint in API_URL_REDIRECT: newbing_endpoint = API_URL_REDIRECT[new
if gemini_endpoint in API_URL_REDIRECT: gemini_endpoint = API_URL_REDIRECT[gemini_endpoint]
if claude_endpoint in API_URL_REDIRECT: claude_endpoint = API_URL_REDIRECT[claude_endpoint]
if yimodel_endpoint in API_URL_REDIRECT: yimodel_endpoint = API_URL_REDIRECT[yimodel_endpoint]
+if cohere_endpoint in API_URL_REDIRECT: cohere_endpoint = API_URL_REDIRECT[cohere_endpoint]
# 获取tokenizer
tokenizer_gpt35 = LazyloadTiktoken("gpt-3.5-turbo")
@@ -310,6 +315,18 @@ model_info = {
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
+
+ # cohere
+ "cohere-command-r-plus": {
+ "fn_with_ui": cohere_ui,
+ "fn_without_ui": cohere_noui,
+ "can_multi_thread": True,
+ "endpoint": cohere_endpoint,
+ "max_token": 1024 * 4,
+ "tokenizer": tokenizer_gpt35,
+ "token_cnt": get_token_num_gpt35,
+ },
+
}
# -=-=-=-=-=-=- 月之暗面 -=-=-=-=-=-=-
from request_llms.bridge_moonshot import predict as moonshot_ui
@@ -359,7 +376,7 @@ for model in AVAIL_LLM_MODELS:
# -=-=-=-=-=-=- 以下部分是新加入的模型,可能附带额外依赖 -=-=-=-=-=-=-
# claude家族
-claude_models = ["claude-instant-1.2","claude-2.0","claude-2.1","claude-3-sonnet-20240229","claude-3-opus-20240229"]
+claude_models = ["claude-instant-1.2","claude-2.0","claude-2.1","claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229"]
if any(item in claude_models for item in AVAIL_LLM_MODELS):
from .bridge_claude import predict_no_ui_long_connection as claude_noui
from .bridge_claude import predict as claude_ui
@@ -393,6 +410,16 @@ if any(item in claude_models for item in AVAIL_LLM_MODELS):
"token_cnt": get_token_num_gpt35,
},
})
+ model_info.update({
+ "claude-3-haiku-20240307": {
+ "fn_with_ui": claude_ui,
+ "fn_without_ui": claude_noui,
+ "endpoint": claude_endpoint,
+ "max_token": 200000,
+ "tokenizer": tokenizer_gpt35,
+ "token_cnt": get_token_num_gpt35,
+ },
+ })
model_info.update({
"claude-3-sonnet-20240229": {
"fn_with_ui": claude_ui,
@@ -789,7 +816,7 @@ def LLM_CATCH_EXCEPTION(f):
"""
装饰器函数,将错误显示出来
"""
- def decorated(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience):
+ def decorated(inputs:str, llm_kwargs:dict, history:list, sys_prompt:str, observe_window:list, console_slience:bool):
try:
return f(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
except Exception as e:
@@ -799,9 +826,9 @@ def LLM_CATCH_EXCEPTION(f):
return decorated
-def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window=[], console_slience=False):
+def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list, sys_prompt:str, observe_window:list=[], console_slience:bool=False):
"""
- 发送至LLM,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
+ 发送至LLM,等待回复,一次性完成,不显示中间过程。但内部(尽可能地)用stream的方法避免中途网线被掐。
inputs:
是本次问询的输入
sys_prompt:
@@ -819,7 +846,6 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
model = llm_kwargs['llm_model']
n_model = 1
if '&' not in model:
- assert not model.startswith("tgui"), "TGUI不支持函数插件的实现"
# 如果只询问1个大语言模型:
method = model_info[model]["fn_without_ui"]
@@ -880,15 +906,22 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
return res
-def predict(inputs, llm_kwargs, *args, **kwargs):
+def predict(inputs:str, llm_kwargs:dict, *args, **kwargs):
"""
发送至LLM,流式获取输出。
用于基础的对话功能。
- inputs 是本次问询的输入
- top_p, temperature是LLM的内部调优参数
- history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
- chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
- additional_fn代表点击的哪个按钮,按钮见functional.py
+
+ 完整参数列表:
+ predict(
+ inputs:str, # 是本次问询的输入
+ llm_kwargs:dict, # 是LLM的内部调优参数
+ plugin_kwargs:dict, # 是插件的内部参数
+ chatbot:ChatBotWithCookies, # 原样传递,负责向用户前端展示对话,兼顾前端状态的功能
+ history:list=[], # 是之前的对话列表
+ system_prompt:str='', # 系统静默prompt
+ stream:bool=True, # 是否流式输出(已弃用)
+ additional_fn:str=None # 基础功能区按钮的附加功能
+ ):
"""
inputs = apply_gpt_academic_string_mask(inputs, mode="show_llm")
diff --git a/request_llms/bridge_chatglmft.py b/request_llms/bridge_chatglmft.py
index 84f1426..394a338 100644
--- a/request_llms/bridge_chatglmft.py
+++ b/request_llms/bridge_chatglmft.py
@@ -137,7 +137,8 @@ class GetGLMFTHandle(Process):
global glmft_handle
glmft_handle = None
#################################################################################
-def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
+def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
+ observe_window:list=[], console_slience:bool=False):
"""
多线程方法
函数的说明请见 request_llms/bridge_all.py
diff --git a/request_llms/bridge_chatgpt.py b/request_llms/bridge_chatgpt.py
index 3b1aec6..1be5d43 100644
--- a/request_llms/bridge_chatgpt.py
+++ b/request_llms/bridge_chatgpt.py
@@ -23,6 +23,7 @@ import random
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history
from toolbox import trimmed_format_exc, is_the_upload_folder, read_one_api_model_name, log_chat
+from toolbox import ChatBotWithCookies
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
@@ -69,7 +70,7 @@ def verify_endpoint(endpoint):
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
return endpoint
-def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
+def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_slience:bool=False):
"""
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
inputs:
@@ -147,7 +148,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
return result
-def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
+def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
+ history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
"""
发送至chatGPT,流式获取输出。
用于基础的对话功能。
diff --git a/request_llms/bridge_claude.py b/request_llms/bridge_claude.py
index 6eb0a89..fd6b5af 100644
--- a/request_llms/bridge_claude.py
+++ b/request_llms/bridge_claude.py
@@ -13,11 +13,11 @@ import logging
import os
import time
import traceback
-from toolbox import get_conf, update_ui, trimmed_format_exc, encode_image, every_image_file_in_path
import json
import requests
+from toolbox import get_conf, update_ui, trimmed_format_exc, encode_image, every_image_file_in_path, log_chat
picture_system_prompt = "\n当回复图像时,必须说明正在回复哪张图像。所有图像仅在最后一个问题中提供,即使它们在历史记录中被提及。请使用'这是第X张图像:'的格式来指明您正在描述的是哪张图像。"
-Claude_3_Models = ["claude-3-sonnet-20240229", "claude-3-opus-20240229"]
+Claude_3_Models = ["claude-3-haiku-20240307", "claude-3-sonnet-20240229", "claude-3-opus-20240229"]
# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
@@ -95,7 +95,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
# make a POST request to the API endpoint, stream=False
from .bridge_all import model_info
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
- response = requests.post(endpoint, headers=headers, json=message,
+ response = requests.post(endpoint, headers=headers, json=message,
proxies=proxies, stream=True, timeout=TIMEOUT_SECONDS);break
except requests.exceptions.ReadTimeout as e:
retry += 1
@@ -116,7 +116,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
if need_to_pass:
pass
elif is_last_chunk:
- logging.info(f'[response] {result}')
+ # logging.info(f'[response] {result}')
break
else:
if chunkjson and chunkjson['type'] == 'content_block_delta':
@@ -194,7 +194,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
# make a POST request to the API endpoint, stream=True
from .bridge_all import model_info
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
- response = requests.post(endpoint, headers=headers, json=message,
+ response = requests.post(endpoint, headers=headers, json=message,
proxies=proxies, stream=True, timeout=TIMEOUT_SECONDS);break
except requests.exceptions.ReadTimeout as e:
retry += 1
@@ -216,7 +216,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
if need_to_pass:
pass
elif is_last_chunk:
- logging.info(f'[response] {gpt_replying_buffer}')
+ log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
+ # logging.info(f'[response] {gpt_replying_buffer}')
break
else:
if chunkjson and chunkjson['type'] == 'content_block_delta':
@@ -305,4 +306,4 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths):
'stream': True,
'system': system_prompt
}
- return headers, payload
\ No newline at end of file
+ return headers, payload
diff --git a/request_llms/bridge_cohere.py b/request_llms/bridge_cohere.py
new file mode 100644
index 0000000..5ce5846
--- /dev/null
+++ b/request_llms/bridge_cohere.py
@@ -0,0 +1,328 @@
+# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目
+
+"""
+ 该文件中主要包含三个函数
+
+ 不具备多线程能力的函数:
+ 1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
+
+ 具备多线程调用能力的函数
+ 2. predict_no_ui_long_connection:支持多线程
+"""
+
+import json
+import time
+import gradio as gr
+import logging
+import traceback
+import requests
+import importlib
+import random
+
+# config_private.py放自己的秘密如API和代理网址
+# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
+from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history
+from toolbox import trimmed_format_exc, is_the_upload_folder, read_one_api_model_name, log_chat
+from toolbox import ChatBotWithCookies
+proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
+ get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
+
+timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
+ '网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
+
+def get_full_error(chunk, stream_response):
+ """
+ 获取完整的从Cohere返回的报错
+ """
+ while True:
+ try:
+ chunk += next(stream_response)
+ except:
+ break
+ return chunk
+
+def decode_chunk(chunk):
+ # 提前读取一些信息 (用于判断异常)
+ chunk_decoded = chunk.decode()
+ chunkjson = None
+ has_choices = False
+ choice_valid = False
+ has_content = False
+ has_role = False
+ try:
+ chunkjson = json.loads(chunk_decoded)
+ has_choices = 'choices' in chunkjson
+ if has_choices: choice_valid = (len(chunkjson['choices']) > 0)
+ if has_choices and choice_valid: has_content = ("content" in chunkjson['choices'][0]["delta"])
+ if has_content: has_content = (chunkjson['choices'][0]["delta"]["content"] is not None)
+ if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"]
+ except:
+ pass
+ return chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role
+
+from functools import lru_cache
+@lru_cache(maxsize=32)
+def verify_endpoint(endpoint):
+ """
+ 检查endpoint是否可用
+ """
+ if "你亲手写的api名称" in endpoint:
+ raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
+ return endpoint
+
+def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_slience:bool=False):
+ """
+ 发送,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
+ inputs:
+ 是本次问询的输入
+ sys_prompt:
+ 系统静默prompt
+ llm_kwargs:
+ 内部调优参数
+ history:
+ 是之前的对话列表
+ observe_window = None:
+ 用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
+ """
+ watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
+ headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
+ retry = 0
+ while True:
+ try:
+ # make a POST request to the API endpoint, stream=False
+ from .bridge_all import model_info
+ endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
+ response = requests.post(endpoint, headers=headers, proxies=proxies,
+ json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
+ except requests.exceptions.ReadTimeout as e:
+ retry += 1
+ traceback.print_exc()
+ if retry > MAX_RETRY: raise TimeoutError
+ if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
+
+ stream_response = response.iter_lines()
+ result = ''
+ json_data = None
+ while True:
+ try: chunk = next(stream_response)
+ except StopIteration:
+ break
+ except requests.exceptions.ConnectionError:
+ chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
+ chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
+ if chunkjson['event_type'] == 'stream-start': continue
+ if chunkjson['event_type'] == 'text-generation':
+ result += chunkjson["text"]
+ if not console_slience: print(chunkjson["text"], end='')
+ if observe_window is not None:
+ # 观测窗,把已经获取的数据显示出去
+ if len(observe_window) >= 1:
+ observe_window[0] += chunkjson["text"]
+ # 看门狗,如果超过期限没有喂狗,则终止
+ if len(observe_window) >= 2:
+ if (time.time()-observe_window[1]) > watch_dog_patience:
+ raise RuntimeError("用户取消了程序。")
+ if chunkjson['event_type'] == 'stream-end': break
+ return result
+
+
+def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
+ history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
+ """
+ 发送至chatGPT,流式获取输出。
+ 用于基础的对话功能。
+ inputs 是本次问询的输入
+ top_p, temperature是chatGPT的内部调优参数
+ history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
+ chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
+ additional_fn代表点击的哪个按钮,按钮见functional.py
+ """
+ # if is_any_api_key(inputs):
+ # chatbot._cookies['api_key'] = inputs
+ # chatbot.append(("输入已识别为Cohere的api_key", what_keys(inputs)))
+ # yield from update_ui(chatbot=chatbot, history=history, msg="api_key已导入") # 刷新界面
+ # return
+ # elif not is_any_api_key(chatbot._cookies['api_key']):
+ # chatbot.append((inputs, "缺少api_key。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。"))
+ # yield from update_ui(chatbot=chatbot, history=history, msg="缺少api_key") # 刷新界面
+ # return
+
+ user_input = inputs
+ if additional_fn is not None:
+ from core_functional import handle_core_functionality
+ inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
+
+ raw_input = inputs
+ # logging.info(f'[raw_input] {raw_input}')
+ chatbot.append((inputs, ""))
+ yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
+
+ # check mis-behavior
+ if is_the_upload_folder(user_input):
+ chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。")
+ yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
+ time.sleep(2)
+
+ try:
+ headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
+ except RuntimeError as e:
+ chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
+ yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
+ return
+
+ # 检查endpoint是否合法
+ try:
+ from .bridge_all import model_info
+ endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
+ except:
+ tb_str = '```\n' + trimmed_format_exc() + '```'
+ chatbot[-1] = (inputs, tb_str)
+ yield from update_ui(chatbot=chatbot, history=history, msg="Endpoint不满足要求") # 刷新界面
+ return
+
+ history.append(inputs); history.append("")
+
+ retry = 0
+ while True:
+ try:
+ # make a POST request to the API endpoint, stream=True
+ response = requests.post(endpoint, headers=headers, proxies=proxies,
+ json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
+ except:
+ retry += 1
+ chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
+ retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
+ yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
+ if retry > MAX_RETRY: raise TimeoutError
+
+ gpt_replying_buffer = ""
+
+ is_head_of_the_stream = True
+ if stream:
+ stream_response = response.iter_lines()
+ while True:
+ try:
+ chunk = next(stream_response)
+ except StopIteration:
+ # 非Cohere官方接口的出现这样的报错,Cohere和API2D不会走这里
+ chunk_decoded = chunk.decode()
+ error_msg = chunk_decoded
+ # 其他情况,直接返回报错
+ chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
+ yield from update_ui(chatbot=chatbot, history=history, msg="非Cohere官方接口返回了错误:" + chunk.decode()) # 刷新界面
+ return
+
+ # 提前读取一些信息 (用于判断异常)
+ chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
+
+ if chunkjson:
+ try:
+ if chunkjson['event_type'] == 'stream-start':
+ continue
+ if chunkjson['event_type'] == 'text-generation':
+ gpt_replying_buffer = gpt_replying_buffer + chunkjson["text"]
+ history[-1] = gpt_replying_buffer
+ chatbot[-1] = (history[-2], history[-1])
+ yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
+ if chunkjson['event_type'] == 'stream-end':
+ log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
+ history[-1] = gpt_replying_buffer
+ chatbot[-1] = (history[-2], history[-1])
+ yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
+ break
+ except Exception as e:
+ yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
+ chunk = get_full_error(chunk, stream_response)
+ chunk_decoded = chunk.decode()
+ error_msg = chunk_decoded
+ chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
+ yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
+ print(error_msg)
+ return
+
+def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
+ from .bridge_all import model_info
+ Cohere_website = ' 请登录Cohere查看详情 https://platform.Cohere.com/signup'
+ if "reduce the length" in error_msg:
+ if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
+ history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
+ max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
+ chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
+ elif "does not exist" in error_msg:
+ chatbot[-1] = (chatbot[-1][0], f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格.")
+ elif "Incorrect API key" in error_msg:
+ chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. Cohere以提供了不正确的API_KEY为由, 拒绝服务. " + Cohere_website)
+ elif "exceeded your current quota" in error_msg:
+ chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. Cohere以账户额度不足为由, 拒绝服务." + Cohere_website)
+ elif "account is not active" in error_msg:
+ chatbot[-1] = (chatbot[-1][0], "[Local Message] Your account is not active. Cohere以账户失效为由, 拒绝服务." + Cohere_website)
+ elif "associated with a deactivated account" in error_msg:
+ chatbot[-1] = (chatbot[-1][0], "[Local Message] You are associated with a deactivated account. Cohere以账户失效为由, 拒绝服务." + Cohere_website)
+ elif "API key has been deactivated" in error_msg:
+ chatbot[-1] = (chatbot[-1][0], "[Local Message] API key has been deactivated. Cohere以账户失效为由, 拒绝服务." + Cohere_website)
+ elif "bad forward key" in error_msg:
+ chatbot[-1] = (chatbot[-1][0], "[Local Message] Bad forward key. API2D账户额度不足.")
+ elif "Not enough point" in error_msg:
+ chatbot[-1] = (chatbot[-1][0], "[Local Message] Not enough point. API2D账户点数不足.")
+ else:
+ from toolbox import regular_txt_to_markdown
+ tb_str = '```\n' + trimmed_format_exc() + '```'
+ chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
+ return chatbot, history
+
+def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
+ """
+ 整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
+ """
+ # if not is_any_api_key(llm_kwargs['api_key']):
+ # raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。")
+
+ api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
+
+ headers = {
+ "Content-Type": "application/json",
+ "Authorization": f"Bearer {api_key}"
+ }
+ if API_ORG.startswith('org-'): headers.update({"Cohere-Organization": API_ORG})
+ if llm_kwargs['llm_model'].startswith('azure-'):
+ headers.update({"api-key": api_key})
+ if llm_kwargs['llm_model'] in AZURE_CFG_ARRAY.keys():
+ azure_api_key_unshared = AZURE_CFG_ARRAY[llm_kwargs['llm_model']]["AZURE_API_KEY"]
+ headers.update({"api-key": azure_api_key_unshared})
+
+ conversation_cnt = len(history) // 2
+
+ messages = [{"role": "SYSTEM", "message": system_prompt}]
+ if conversation_cnt:
+ for index in range(0, 2*conversation_cnt, 2):
+ what_i_have_asked = {}
+ what_i_have_asked["role"] = "USER"
+ what_i_have_asked["message"] = history[index]
+ what_gpt_answer = {}
+ what_gpt_answer["role"] = "CHATBOT"
+ what_gpt_answer["message"] = history[index+1]
+ if what_i_have_asked["message"] != "":
+ if what_gpt_answer["message"] == "": continue
+ if what_gpt_answer["message"] == timeout_bot_msg: continue
+ messages.append(what_i_have_asked)
+ messages.append(what_gpt_answer)
+ else:
+ messages[-1]['message'] = what_gpt_answer['message']
+
+ model = llm_kwargs['llm_model']
+ if model.startswith('cohere-'): model = model[len('cohere-'):]
+ payload = {
+ "model": model,
+ "message": inputs,
+ "chat_history": messages,
+ "temperature": llm_kwargs['temperature'], # 1.0,
+ "top_p": llm_kwargs['top_p'], # 1.0,
+ "n": 1,
+ "stream": stream,
+ "presence_penalty": 0,
+ "frequency_penalty": 0,
+ }
+
+ return headers,payload
+
+
diff --git a/request_llms/bridge_google_gemini.py b/request_llms/bridge_google_gemini.py
index 5cf3be9..129f068 100644
--- a/request_llms/bridge_google_gemini.py
+++ b/request_llms/bridge_google_gemini.py
@@ -7,6 +7,7 @@ import re
import os
import time
from request_llms.com_google import GoogleChatInit
+from toolbox import ChatBotWithCookies
from toolbox import get_conf, update_ui, update_ui_lastest_msg, have_any_recent_upload_image_files, trimmed_format_exc
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY')
@@ -44,7 +45,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
return gpt_replying_buffer
-def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
+def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
+ history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
# 检查API_KEY
if get_conf("GEMINI_API_KEY") == "":
yield from update_ui_lastest_msg(f"请配置 GEMINI_API_KEY。", chatbot=chatbot, history=history, delay=0)
diff --git a/request_llms/bridge_jittorllms_llama.py b/request_llms/bridge_jittorllms_llama.py
index 25dbb42..9587fc3 100644
--- a/request_llms/bridge_jittorllms_llama.py
+++ b/request_llms/bridge_jittorllms_llama.py
@@ -1,10 +1,10 @@
-from transformers import AutoModel, AutoTokenizer
import time
import threading
import importlib
from toolbox import update_ui, get_conf
from multiprocessing import Process, Pipe
+from transformers import AutoModel, AutoTokenizer
load_message = "jittorllms尚未加载,加载需要一段时间。注意,请避免混用多种jittor模型,否则可能导致显存溢出而造成卡顿,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
@@ -106,7 +106,8 @@ class GetGLMHandle(Process):
global llama_glm_handle
llama_glm_handle = None
#################################################################################
-def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
+def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
+ observe_window:list=[], console_slience:bool=False):
"""
多线程方法
函数的说明请见 request_llms/bridge_all.py
diff --git a/request_llms/bridge_jittorllms_pangualpha.py b/request_llms/bridge_jittorllms_pangualpha.py
index 2681157..325c87b 100644
--- a/request_llms/bridge_jittorllms_pangualpha.py
+++ b/request_llms/bridge_jittorllms_pangualpha.py
@@ -1,10 +1,10 @@
-from transformers import AutoModel, AutoTokenizer
import time
import threading
import importlib
from toolbox import update_ui, get_conf
from multiprocessing import Process, Pipe
+from transformers import AutoModel, AutoTokenizer
load_message = "jittorllms尚未加载,加载需要一段时间。注意,请避免混用多种jittor模型,否则可能导致显存溢出而造成卡顿,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
@@ -106,7 +106,8 @@ class GetGLMHandle(Process):
global pangu_glm_handle
pangu_glm_handle = None
#################################################################################
-def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
+def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
+ observe_window:list=[], console_slience:bool=False):
"""
多线程方法
函数的说明请见 request_llms/bridge_all.py
diff --git a/request_llms/bridge_jittorllms_rwkv.py b/request_llms/bridge_jittorllms_rwkv.py
index 28893d4..11f64c0 100644
--- a/request_llms/bridge_jittorllms_rwkv.py
+++ b/request_llms/bridge_jittorllms_rwkv.py
@@ -106,7 +106,8 @@ class GetGLMHandle(Process):
global rwkv_glm_handle
rwkv_glm_handle = None
#################################################################################
-def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
+def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
+ observe_window:list=[], console_slience:bool=False):
"""
多线程方法
函数的说明请见 request_llms/bridge_all.py
diff --git a/request_llms/bridge_moonshot.py b/request_llms/bridge_moonshot.py
index 645326e..1f73bd5 100644
--- a/request_llms/bridge_moonshot.py
+++ b/request_llms/bridge_moonshot.py
@@ -8,6 +8,7 @@ import time
import logging
from toolbox import get_conf, update_ui, log_chat
+from toolbox import ChatBotWithCookies
import requests
@@ -146,7 +147,8 @@ def msg_handle_error(llm_kwargs, chunk_decoded):
return error_msg
-def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
+def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
+ history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
chatbot.append([inputs, ""])
if additional_fn is not None:
diff --git a/request_llms/bridge_moss.py b/request_llms/bridge_moss.py
index 967f723..a7e75d2 100644
--- a/request_llms/bridge_moss.py
+++ b/request_llms/bridge_moss.py
@@ -171,7 +171,8 @@ class GetGLMHandle(Process):
global moss_handle
moss_handle = None
#################################################################################
-def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
+def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
+ observe_window:list=[], console_slience:bool=False):
"""
多线程方法
函数的说明请见 request_llms/bridge_all.py
diff --git a/request_llms/bridge_qianfan.py b/request_llms/bridge_qianfan.py
index ab3235c..76cea3c 100644
--- a/request_llms/bridge_qianfan.py
+++ b/request_llms/bridge_qianfan.py
@@ -117,7 +117,8 @@ def generate_from_baidu_qianfan(inputs, llm_kwargs, history, system_prompt):
raise RuntimeError(dec['error_msg'])
-def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
+def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
+ observe_window:list=[], console_slience:bool=False):
"""
⭐多线程方法
函数的说明请见 request_llms/bridge_all.py
diff --git a/request_llms/bridge_qwen.py b/request_llms/bridge_qwen.py
index 808c2c7..2b1eeed 100644
--- a/request_llms/bridge_qwen.py
+++ b/request_llms/bridge_qwen.py
@@ -5,7 +5,8 @@ from toolbox import check_packages, report_exception
model_name = 'Qwen'
-def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
+def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
+ observe_window:list=[], console_slience:bool=False):
"""
⭐多线程方法
函数的说明请见 request_llms/bridge_all.py
@@ -47,6 +48,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
+ chatbot[-1] = (inputs, "")
+ yield from update_ui(chatbot=chatbot, history=history)
# 开始接收回复
from .com_qwenapi import QwenRequestInstance
diff --git a/request_llms/bridge_skylark2.py b/request_llms/bridge_skylark2.py
index 1a8edcb..37d6cc1 100644
--- a/request_llms/bridge_skylark2.py
+++ b/request_llms/bridge_skylark2.py
@@ -9,7 +9,8 @@ def validate_key():
if YUNQUE_SECRET_KEY == '': return False
return True
-def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
+def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
+ observe_window:list=[], console_slience:bool=False):
"""
⭐ 多线程方法
函数的说明请见 request_llms/bridge_all.py
diff --git a/request_llms/bridge_spark.py b/request_llms/bridge_spark.py
index 8449494..4fc4351 100644
--- a/request_llms/bridge_spark.py
+++ b/request_llms/bridge_spark.py
@@ -13,7 +13,8 @@ def validate_key():
return False
return True
-def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
+def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
+ observe_window:list=[], console_slience:bool=False):
"""
⭐多线程方法
函数的说明请见 request_llms/bridge_all.py
diff --git a/request_llms/bridge_zhipu.py b/request_llms/bridge_zhipu.py
index ecb3b75..f1db2e2 100644
--- a/request_llms/bridge_zhipu.py
+++ b/request_llms/bridge_zhipu.py
@@ -1,7 +1,8 @@
import time
import os
-from toolbox import update_ui, get_conf, update_ui_lastest_msg
+from toolbox import update_ui, get_conf, update_ui_lastest_msg, log_chat
from toolbox import check_packages, report_exception, have_any_recent_upload_image_files
+from toolbox import ChatBotWithCookies
model_name = '智谱AI大模型'
zhipuai_default_model = 'glm-4'
@@ -16,7 +17,8 @@ def make_media_input(inputs, image_paths):
inputs = inputs + f'
'
return inputs
-def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
+def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
+ observe_window:list=[], console_slience:bool=False):
"""
⭐多线程方法
函数的说明请见 request_llms/bridge_all.py
@@ -42,7 +44,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
return response
-def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
+def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
+ history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
"""
⭐单线程方法
函数的说明请见 request_llms/bridge_all.py
@@ -90,4 +93,5 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
chatbot[-1] = [inputs, response]
yield from update_ui(chatbot=chatbot, history=history)
history.extend([inputs, response])
+ log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=response)
yield from update_ui(chatbot=chatbot, history=history)
\ No newline at end of file
diff --git a/request_llms/local_llm_class.py b/request_llms/local_llm_class.py
index 47af9e3..75dd17d 100644
--- a/request_llms/local_llm_class.py
+++ b/request_llms/local_llm_class.py
@@ -1,6 +1,7 @@
import time
import threading
from toolbox import update_ui, Singleton
+from toolbox import ChatBotWithCookies
from multiprocessing import Process, Pipe
from contextlib import redirect_stdout
from request_llms.queued_pipe import create_queue_pipe
@@ -214,7 +215,7 @@ class LocalLLMHandle(Process):
def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='classic'):
load_message = f"{model_name}尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,{model_name}消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
- def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
+ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=[], console_slience:bool=False):
"""
refer to request_llms/bridge_all.py
"""
@@ -260,7 +261,8 @@ def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='cla
raise RuntimeError("程序终止。")
return response
- def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
+ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
+ history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
"""
refer to request_llms/bridge_all.py
"""
diff --git a/requirements.txt b/requirements.txt
index 3609086..bf83268 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -17,6 +17,7 @@ prompt_toolkit
latex2mathml
python-docx
mdtex2html
+dashscope
pyautogen
colorama
Markdown
@@ -25,4 +26,4 @@ pymupdf
openai
arxiv
numpy
-rich
+rich
\ No newline at end of file
diff --git a/shared_utils/cookie_manager.py b/shared_utils/cookie_manager.py
index 8b13789..bdfdbd5 100644
--- a/shared_utils/cookie_manager.py
+++ b/shared_utils/cookie_manager.py
@@ -1 +1,61 @@
+from typing import Callable
+def load_web_cookie_cache__fn_builder(customize_btns, cookies, predefined_btns)->Callable:
+ def load_web_cookie_cache(persistent_cookie_, cookies_):
+ import gradio as gr
+ from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, assign_user_uuid
+
+ ret = {}
+ for k in customize_btns:
+ ret.update({customize_btns[k]: gr.update(visible=False, value="")})
+
+ try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
+ except: return ret
+
+ customize_fn_overwrite_ = persistent_cookie_.get("custom_bnt", {})
+ cookies_['customize_fn_overwrite'] = customize_fn_overwrite_
+ ret.update({cookies: cookies_})
+
+ for k,v in persistent_cookie_["custom_bnt"].items():
+ if v['Title'] == "": continue
+ if k in customize_btns: ret.update({customize_btns[k]: gr.update(visible=True, value=v['Title'])})
+ else: ret.update({predefined_btns[k]: gr.update(visible=True, value=v['Title'])})
+ return ret
+ return load_web_cookie_cache
+
+
+def assign_btn__fn_builder(customize_btns, predefined_btns, cookies, web_cookie_cache)->Callable:
+ def assign_btn(persistent_cookie_, cookies_, basic_btn_dropdown_, basic_fn_title, basic_fn_prefix, basic_fn_suffix, clean_up=False):
+ import gradio as gr
+ from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, assign_user_uuid
+ ret = {}
+ # 读取之前的自定义按钮
+ customize_fn_overwrite_ = cookies_['customize_fn_overwrite']
+ # 更新新的自定义按钮
+ customize_fn_overwrite_.update({
+ basic_btn_dropdown_:
+ {
+ "Title":basic_fn_title,
+ "Prefix":basic_fn_prefix,
+ "Suffix":basic_fn_suffix,
+ }
+ }
+ )
+ if clean_up:
+ customize_fn_overwrite_ = {}
+ cookies_.update(customize_fn_overwrite_) # 更新cookie
+ visible = (not clean_up) and (basic_fn_title != "")
+ if basic_btn_dropdown_ in customize_btns:
+ # 是自定义按钮,不是预定义按钮
+ ret.update({customize_btns[basic_btn_dropdown_]: gr.update(visible=visible, value=basic_fn_title)})
+ else:
+ # 是预定义按钮
+ ret.update({predefined_btns[basic_btn_dropdown_]: gr.update(visible=visible, value=basic_fn_title)})
+ ret.update({cookies: cookies_})
+ try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
+ except: persistent_cookie_ = {}
+ persistent_cookie_["custom_bnt"] = customize_fn_overwrite_ # dict update new value
+ persistent_cookie_ = to_cookie_str(persistent_cookie_) # persistent cookie to dict
+ ret.update({web_cookie_cache: persistent_cookie_}) # write persistent cookie
+ return ret
+ return assign_btn
diff --git a/shared_utils/fastapi_server.py b/shared_utils/fastapi_server.py
new file mode 100644
index 0000000..9d3334b
--- /dev/null
+++ b/shared_utils/fastapi_server.py
@@ -0,0 +1,211 @@
+"""
+Tests:
+
+- custom_path false / no user auth:
+ -- upload file(yes)
+ -- download file(yes)
+ -- websocket(yes)
+ -- block __pycache__ access(yes)
+ -- rel (yes)
+ -- abs (yes)
+ -- block user access(fail) http://localhost:45013/file=gpt_log/admin/chat_secrets.log
+ -- fix(commit f6bf05048c08f5cd84593f7fdc01e64dec1f584a)-> block successful
+
+- custom_path yes("/cc/gptac") / no user auth:
+ -- upload file(yes)
+ -- download file(yes)
+ -- websocket(yes)
+ -- block __pycache__ access(yes)
+ -- block user access(yes)
+
+- custom_path yes("/cc/gptac/") / no user auth:
+ -- upload file(yes)
+ -- download file(yes)
+ -- websocket(yes)
+ -- block user access(yes)
+
+- custom_path yes("/cc/gptac/") / + user auth:
+ -- upload file(yes)
+ -- download file(yes)
+ -- websocket(yes)
+ -- block user access(yes)
+ -- block user-wise access (yes)
+
+- custom_path no + user auth:
+ -- upload file(yes)
+ -- download file(yes)
+ -- websocket(yes)
+ -- block user access(yes)
+ -- block user-wise access (yes)
+
+queue cocurrent effectiveness
+ -- upload file(yes)
+ -- download file(yes)
+ -- websocket(yes)
+"""
+
+import os, requests, threading, time
+import uvicorn
+
+def _authorize_user(path_or_url, request, gradio_app):
+ from toolbox import get_conf, default_user_name
+ PATH_PRIVATE_UPLOAD, PATH_LOGGING = get_conf('PATH_PRIVATE_UPLOAD', 'PATH_LOGGING')
+ sensitive_path = None
+ path_or_url = os.path.relpath(path_or_url)
+ if path_or_url.startswith(PATH_LOGGING):
+ sensitive_path = PATH_LOGGING
+ if path_or_url.startswith(PATH_PRIVATE_UPLOAD):
+ sensitive_path = PATH_PRIVATE_UPLOAD
+ if sensitive_path:
+ token = request.cookies.get("access-token") or request.cookies.get("access-token-unsecure")
+ user = gradio_app.tokens.get(token) # get user
+ allowed_users = [user, 'autogen', default_user_name] # three user path that can be accessed
+ for user_allowed in allowed_users:
+ # exact match
+ if f"{os.sep}".join(path_or_url.split(os.sep)[:2]) == os.path.join(sensitive_path, user_allowed):
+ return True
+ return False # "越权访问!"
+ return True
+
+
+class Server(uvicorn.Server):
+ # A server that runs in a separate thread
+ def install_signal_handlers(self):
+ pass
+
+ def run_in_thread(self):
+ self.thread = threading.Thread(target=self.run, daemon=True)
+ self.thread.start()
+ while not self.started:
+ time.sleep(1e-3)
+
+ def close(self):
+ self.should_exit = True
+ self.thread.join()
+
+
+def start_app(app_block, CONCURRENT_COUNT, AUTHENTICATION, PORT, SSL_KEYFILE, SSL_CERTFILE):
+ import uvicorn
+ import fastapi
+ import gradio as gr
+ from fastapi import FastAPI
+ from gradio.routes import App
+ from toolbox import get_conf
+ CUSTOM_PATH, PATH_LOGGING = get_conf('CUSTOM_PATH', 'PATH_LOGGING')
+
+ # --- --- configurate gradio app block --- ---
+ app_block:gr.Blocks
+ app_block.ssl_verify = False
+ app_block.auth_message = '请登录'
+ app_block.favicon_path = os.path.join(os.path.dirname(os.path.dirname(__file__)), "docs/logo.png")
+ app_block.auth = AUTHENTICATION if len(AUTHENTICATION) != 0 else None
+ app_block.blocked_paths = ["config.py", "__pycache__", "config_private.py", "docker-compose.yml", "Dockerfile", f"{PATH_LOGGING}/admin"]
+ app_block.dev_mode = False
+ app_block.config = app_block.get_config_file()
+ app_block.enable_queue = True
+ app_block.queue(concurrency_count=CONCURRENT_COUNT)
+ app_block.validate_queue_settings()
+ app_block.show_api = False
+ app_block.config = app_block.get_config_file()
+ max_threads = 40
+ app_block.max_threads = max(
+ app_block._queue.max_thread_count if app_block.enable_queue else 0, max_threads
+ )
+ app_block.is_colab = False
+ app_block.is_kaggle = False
+ app_block.is_sagemaker = False
+
+ gradio_app = App.create_app(app_block)
+
+ # --- --- replace gradio endpoint to forbid access to sensitive files --- ---
+ if len(AUTHENTICATION) > 0:
+ dependencies = []
+ endpoint = None
+ for route in list(gradio_app.router.routes):
+ if route.path == "/file/{path:path}":
+ gradio_app.router.routes.remove(route)
+ if route.path == "/file={path_or_url:path}":
+ dependencies = route.dependencies
+ endpoint = route.endpoint
+ gradio_app.router.routes.remove(route)
+ @gradio_app.get("/file/{path:path}", dependencies=dependencies)
+ @gradio_app.head("/file={path_or_url:path}", dependencies=dependencies)
+ @gradio_app.get("/file={path_or_url:path}", dependencies=dependencies)
+ async def file(path_or_url: str, request: fastapi.Request):
+ if len(AUTHENTICATION) > 0:
+ if not _authorize_user(path_or_url, request, gradio_app):
+ return "越权访问!"
+ return await endpoint(path_or_url, request)
+
+ # --- --- app_lifespan --- ---
+ from contextlib import asynccontextmanager
+ @asynccontextmanager
+ async def app_lifespan(app):
+ async def startup_gradio_app():
+ if gradio_app.get_blocks().enable_queue:
+ gradio_app.get_blocks().startup_events()
+ async def shutdown_gradio_app():
+ pass
+ await startup_gradio_app() # startup logic here
+ yield # The application will serve requests after this point
+ await shutdown_gradio_app() # cleanup/shutdown logic here
+
+ # --- --- FastAPI --- ---
+ fastapi_app = FastAPI(lifespan=app_lifespan)
+ fastapi_app.mount(CUSTOM_PATH, gradio_app)
+
+ # --- --- favicon --- ---
+ if CUSTOM_PATH != '/':
+ from fastapi.responses import FileResponse
+ @fastapi_app.get("/favicon.ico")
+ async def favicon():
+ return FileResponse(app_block.favicon_path)
+
+ # --- --- uvicorn.Config --- ---
+ ssl_keyfile = None if SSL_KEYFILE == "" else SSL_KEYFILE
+ ssl_certfile = None if SSL_CERTFILE == "" else SSL_CERTFILE
+ server_name = "0.0.0.0"
+ config = uvicorn.Config(
+ fastapi_app,
+ host=server_name,
+ port=PORT,
+ reload=False,
+ log_level="warning",
+ ssl_keyfile=ssl_keyfile,
+ ssl_certfile=ssl_certfile,
+ )
+ server = Server(config)
+ url_host_name = "localhost" if server_name == "0.0.0.0" else server_name
+ if ssl_keyfile is not None:
+ if ssl_certfile is None:
+ raise ValueError(
+ "ssl_certfile must be provided if ssl_keyfile is provided."
+ )
+ path_to_local_server = f"https://{url_host_name}:{PORT}/"
+ else:
+ path_to_local_server = f"http://{url_host_name}:{PORT}/"
+ if CUSTOM_PATH != '/':
+ path_to_local_server += CUSTOM_PATH.lstrip('/').rstrip('/') + '/'
+ # --- --- begin --- ---
+ server.run_in_thread()
+
+ # --- --- after server launch --- ---
+ app_block.server = server
+ app_block.server_name = server_name
+ app_block.local_url = path_to_local_server
+ app_block.protocol = (
+ "https"
+ if app_block.local_url.startswith("https") or app_block.is_colab
+ else "http"
+ )
+
+ if app_block.enable_queue:
+ app_block._queue.set_url(path_to_local_server)
+
+ forbid_proxies = {
+ "http": "",
+ "https": "",
+ }
+ requests.get(f"{app_block.local_url}startup-events", verify=app_block.ssl_verify, proxies=forbid_proxies)
+ app_block.is_running = True
+ app_block.block_thread()
diff --git a/shared_utils/key_pattern_manager.py b/shared_utils/key_pattern_manager.py
index 6f919f8..44ad949 100644
--- a/shared_utils/key_pattern_manager.py
+++ b/shared_utils/key_pattern_manager.py
@@ -28,6 +28,11 @@ def is_api2d_key(key):
return bool(API_MATCH_API2D)
+def is_cohere_api_key(key):
+ API_MATCH_AZURE = re.match(r"[a-zA-Z0-9]{40}$", key)
+ return bool(API_MATCH_AZURE)
+
+
def is_any_api_key(key):
if ',' in key:
keys = key.split(',')
@@ -35,7 +40,7 @@ def is_any_api_key(key):
if is_any_api_key(k): return True
return False
else:
- return is_openai_api_key(key) or is_api2d_key(key) or is_azure_api_key(key)
+ return is_openai_api_key(key) or is_api2d_key(key) or is_azure_api_key(key) or is_cohere_api_key(key)
def what_keys(keys):
@@ -74,8 +79,12 @@ def select_api_key(keys, llm_model):
for k in key_list:
if is_azure_api_key(k): avail_key_list.append(k)
+ if llm_model.startswith('cohere-'):
+ for k in key_list:
+ if is_cohere_api_key(k): avail_key_list.append(k)
+
if len(avail_key_list) == 0:
- raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源(右下角更换模型菜单中可切换openai,azure,claude,api2d等请求源)。")
+ raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源(左上角更换模型菜单中可切换openai,azure,claude,cohere等请求源)。")
api_key = random.choice(avail_key_list) # 随机负载均衡
return api_key
diff --git a/tests/test_llms.py b/tests/test_llms.py
index 2307848..e4b06c1 100644
--- a/tests/test_llms.py
+++ b/tests/test_llms.py
@@ -11,28 +11,45 @@ def validate_path():
validate_path() # validate path so you can run from base directory
-if __name__ == "__main__":
- # from request_llms.bridge_newbingfree import predict_no_ui_long_connection
- # from request_llms.bridge_moss import predict_no_ui_long_connection
- # from request_llms.bridge_jittorllms_pangualpha import predict_no_ui_long_connection
- # from request_llms.bridge_jittorllms_llama import predict_no_ui_long_connection
- # from request_llms.bridge_claude import predict_no_ui_long_connection
- # from request_llms.bridge_internlm import predict_no_ui_long_connection
- # from request_llms.bridge_deepseekcoder import predict_no_ui_long_connection
- # from request_llms.bridge_qwen_7B import predict_no_ui_long_connection
- from request_llms.bridge_qwen_local import predict_no_ui_long_connection
- # from request_llms.bridge_spark import predict_no_ui_long_connection
- # from request_llms.bridge_zhipu import predict_no_ui_long_connection
- # from request_llms.bridge_chatglm3 import predict_no_ui_long_connection
+if "在线模型":
+ if __name__ == "__main__":
+ from request_llms.bridge_cohere import predict_no_ui_long_connection
+ # from request_llms.bridge_spark import predict_no_ui_long_connection
+ # from request_llms.bridge_zhipu import predict_no_ui_long_connection
+ # from request_llms.bridge_chatglm3 import predict_no_ui_long_connection
+ llm_kwargs = {
+ "llm_model": "command-r-plus",
+ "max_length": 4096,
+ "top_p": 1,
+ "temperature": 1,
+ }
- llm_kwargs = {
- "max_length": 4096,
- "top_p": 1,
- "temperature": 1,
- }
+ result = predict_no_ui_long_connection(
+ inputs="请问什么是质子?", llm_kwargs=llm_kwargs, history=["你好", "我好!"], sys_prompt="系统"
+ )
+ print("final result:", result)
+ print("final result:", result)
+
+
+if "本地模型":
+ if __name__ == "__main__":
+ # from request_llms.bridge_newbingfree import predict_no_ui_long_connection
+ # from request_llms.bridge_moss import predict_no_ui_long_connection
+ # from request_llms.bridge_jittorllms_pangualpha import predict_no_ui_long_connection
+ # from request_llms.bridge_jittorllms_llama import predict_no_ui_long_connection
+ # from request_llms.bridge_claude import predict_no_ui_long_connection
+ # from request_llms.bridge_internlm import predict_no_ui_long_connection
+ # from request_llms.bridge_deepseekcoder import predict_no_ui_long_connection
+ # from request_llms.bridge_qwen_7B import predict_no_ui_long_connection
+ # from request_llms.bridge_qwen_local import predict_no_ui_long_connection
+ llm_kwargs = {
+ "max_length": 4096,
+ "top_p": 1,
+ "temperature": 1,
+ }
+ result = predict_no_ui_long_connection(
+ inputs="请问什么是质子?", llm_kwargs=llm_kwargs, history=["你好", "我好!"], sys_prompt=""
+ )
+ print("final result:", result)
- result = predict_no_ui_long_connection(
- inputs="请问什么是质子?", llm_kwargs=llm_kwargs, history=["你好", "我好!"], sys_prompt=""
- )
- print("final result:", result)
diff --git a/themes/common.js b/themes/common.js
index e3de453..cccbcb9 100644
--- a/themes/common.js
+++ b/themes/common.js
@@ -2,15 +2,15 @@
// 第 1 部分: 工具函数
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
-function push_data_to_gradio_component(DAT, ELEM_ID, TYPE){
+function push_data_to_gradio_component(DAT, ELEM_ID, TYPE) {
// type, // type==="str" / type==="float"
- if (TYPE=="str"){
+ if (TYPE == "str") {
// convert dat to string: do nothing
}
- else if (TYPE=="no_conversion"){
+ else if (TYPE == "no_conversion") {
// no nothing
}
- else if (TYPE=="float"){
+ else if (TYPE == "float") {
// convert dat to float
DAT = parseFloat(DAT);
}
@@ -24,7 +24,7 @@ function push_data_to_gradio_component(DAT, ELEM_ID, TYPE){
}
-async function get_gradio_component(ELEM_ID){
+async function get_gradio_component(ELEM_ID) {
function waitFor(ELEM_ID) {
return new Promise((resolve) => {
const myEvent = new CustomEvent('gpt_academic_get_gradio_component_value', {
@@ -41,14 +41,13 @@ async function get_gradio_component(ELEM_ID){
}
-async function get_data_from_gradio_component(ELEM_ID){
+async function get_data_from_gradio_component(ELEM_ID) {
let comp = await get_gradio_component(ELEM_ID);
return comp.props.value;
}
-function update_array(arr, item, mode) {
- // let p = ["基础功能区", "输入清除键", "函数插件区"];
+function update_array(arr, item, mode) {
// // Remove "输入清除键"
// p = updateArray(p, "输入清除键", "remove");
// console.log(p); // Should log: ["基础功能区", "函数插件区"]
@@ -60,13 +59,13 @@ function update_array(arr, item, mode) {
const index = arr.indexOf(item);
if (mode === "remove") {
if (index !== -1) {
- // Item found, remove it
- arr.splice(index, 1);
+ // Item found, remove it
+ arr.splice(index, 1);
}
} else if (mode === "add") {
if (index === -1) {
- // Item not found, add it
- arr.push(item);
+ // Item not found, add it
+ arr.push(item);
}
}
return arr;
@@ -85,6 +84,7 @@ function gradioApp() {
return elem.shadowRoot ? elem.shadowRoot : elem;
}
+
function setCookie(name, value, days) {
var expires = "";
@@ -97,6 +97,7 @@ function setCookie(name, value, days) {
document.cookie = name + "=" + value + expires + "; path=/";
}
+
function getCookie(name) {
var decodedCookie = decodeURIComponent(document.cookie);
var cookies = decodedCookie.split(';');
@@ -112,6 +113,7 @@ function getCookie(name) {
return null;
}
+
let toastCount = 0;
function toast_push(msg, duration) {
duration = isNaN(duration) ? 3000 : duration;
@@ -134,6 +136,7 @@ function toast_push(msg, duration) {
toastCount++;
}
+
function toast_up(msg) {
var m = document.getElementById('toast_up');
if (m) {
@@ -146,6 +149,7 @@ function toast_up(msg) {
document.body.appendChild(m);
}
+
function toast_down() {
var m = document.getElementById('toast_up');
if (m) {
@@ -153,6 +157,7 @@ function toast_down() {
}
}
+
function begin_loading_status() {
// Create the loader div and add styling
var loader = document.createElement('div');
@@ -327,6 +332,7 @@ function do_something_but_not_too_frequently(min_interval, func) {
}
}
+
function chatbotContentChanged(attempt = 1, force = false) {
// https://github.com/GaiZhenbiao/ChuanhuChatGPT/tree/main/web_assets/javascript
for (var i = 0; i < attempt; i++) {
@@ -343,7 +349,6 @@ function chatbotContentChanged(attempt = 1, force = false) {
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
// 第 3 部分: chatbot动态高度调整
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
-
function chatbotAutoHeight() {
// 自动调整高度:立即
function update_height() {
@@ -375,6 +380,7 @@ function chatbotAutoHeight() {
setInterval(function () { update_height_slow() }, 50); // 每50毫秒执行一次
}
+
swapped = false;
function swap_input_area() {
// Get the elements to be swapped
@@ -394,6 +400,7 @@ function swap_input_area() {
else { swapped = true; }
}
+
function get_elements(consider_state_panel = false) {
var chatbot = document.querySelector('#gpt-chatbot > div.wrap.svelte-18telvq');
if (!chatbot) {
@@ -491,6 +498,7 @@ async function upload_files(files) {
}
}
+
function register_func_paste(input) {
let paste_files = [];
if (input) {
@@ -517,6 +525,7 @@ function register_func_paste(input) {
}
}
+
function register_func_drag(elem) {
if (elem) {
const dragEvents = ["dragover"];
@@ -553,6 +562,7 @@ function register_func_drag(elem) {
}
}
+
function elem_upload_component_pop_message(elem) {
if (elem) {
const dragEvents = ["dragover"];
@@ -582,6 +592,7 @@ function elem_upload_component_pop_message(elem) {
}
}
+
function register_upload_event() {
locate_upload_elems();
if (elem_upload_float) {
@@ -604,6 +615,7 @@ function register_upload_event() {
}
}
+
function monitoring_input_box() {
register_upload_event();
@@ -637,7 +649,6 @@ window.addEventListener("DOMContentLoaded", function () {
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
// 第 5 部分: 音频按钮样式变化
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
-
function audio_fn_init() {
let audio_component = document.getElementById('elem_audio');
if (audio_component) {
@@ -674,6 +685,7 @@ function audio_fn_init() {
}
}
+
function minor_ui_adjustment() {
let cbsc_area = document.getElementById('cbsc');
cbsc_area.style.paddingTop = '15px';
@@ -766,21 +778,6 @@ function limit_scroll_position() {
// 第 7 部分: JS初始化函数
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
-function GptAcademicJavaScriptInit(LAYOUT = "LEFT-RIGHT") {
- audio_fn_init();
- minor_ui_adjustment();
- chatbotIndicator = gradioApp().querySelector('#gpt-chatbot > div.wrap');
- var chatbotObserver = new MutationObserver(() => {
- chatbotContentChanged(1);
- });
- chatbotObserver.observe(chatbotIndicator, { attributes: true, childList: true, subtree: true });
- if (LAYOUT === "LEFT-RIGHT") { chatbotAutoHeight(); }
- if (LAYOUT === "LEFT-RIGHT") { limit_scroll_position(); }
- // setInterval(function () { uml("mermaid") }, 5000); // 每50毫秒执行一次
-
-}
-
-
function loadLive2D() {
try {
$("").attr({ href: "file=themes/waifu_plugin/waifu.css", rel: "stylesheet", type: "text/css" }).appendTo('head');
@@ -802,12 +799,12 @@ function loadLive2D() {
live2d_settings['canTakeScreenshot'] = false;
live2d_settings['canTurnToHomePage'] = false;
live2d_settings['canTurnToAboutPage'] = false;
- live2d_settings['showHitokoto'] = false; // 显示一言
+ live2d_settings['showHitokoto'] = false; // 显示一言
live2d_settings['showF12Status'] = false; // 显示加载状态
live2d_settings['showF12Message'] = false; // 显示看板娘消息
- live2d_settings['showF12OpenMsg'] = false; // 显示控制台打开提示
- live2d_settings['showCopyMessage'] = false; // 显示 复制内容 提示
- live2d_settings['showWelcomeMessage'] = true; // 显示进入面页欢迎词
+ live2d_settings['showF12OpenMsg'] = false; // 显示控制台打开提示
+ live2d_settings['showCopyMessage'] = false; // 显示 复制内容 提示
+ live2d_settings['showWelcomeMessage'] = true; // 显示进入面页欢迎词
/* 在 initModel 前添加 */
initModel("file=themes/waifu_plugin/waifu-tips.json");
}
@@ -817,7 +814,8 @@ function loadLive2D() {
} catch (err) { console.log("[Error] JQuery is not defined.") }
}
-function get_checkbox_selected_items(elem_id){
+
+function get_checkbox_selected_items(elem_id) {
display_panel_arr = [];
document.getElementById(elem_id).querySelector('[data-testid="checkbox-group"]').querySelectorAll('label').forEach(label => {
// Get the span text
@@ -831,62 +829,24 @@ function get_checkbox_selected_items(elem_id){
return display_panel_arr;
}
-function set_checkbox(key, bool, set_twice=false) {
- set_success = false;
- elem_ids = ["cbsc", "cbs"]
- elem_ids.forEach(id => {
- document.getElementById(id).querySelector('[data-testid="checkbox-group"]').querySelectorAll('label').forEach(label => {
- // Get the span text
- const spanText = label.querySelector('span').textContent;
- if (spanText === key) {
- if (bool){
- label.classList.add('selected');
- } else {
- if (label.classList.contains('selected')) {
- label.classList.remove('selected');
- }
- }
- if (set_twice){
- setTimeout(() => {
- if (bool){
- label.classList.add('selected');
- } else {
- if (label.classList.contains('selected')) {
- label.classList.remove('selected');
- }
- }
- }, 5000);
- }
-
- label.querySelector('input').checked = bool;
- set_success = true;
- return
- }
- });
- });
-
- if (!set_success){
- console.log("设置checkbox失败,没有找到对应的key")
- }
-}
function gpt_academic_gradio_saveload(
- save_or_load, // save_or_load==="save" / save_or_load==="load"
- elem_id, // element id
- cookie_key, // cookie key
- save_value="", // save value
- load_type = "str", // type==="str" / type==="float"
- load_default=false, // load default value
- load_default_value=""
- ) {
+ save_or_load, // save_or_load==="save" / save_or_load==="load"
+ elem_id, // element id
+ cookie_key, // cookie key
+ save_value = "", // save value
+ load_type = "str", // type==="str" / type==="float"
+ load_default = false, // load default value
+ load_default_value = ""
+) {
if (save_or_load === "load") {
let value = getCookie(cookie_key);
if (value) {
console.log('加载cookie', elem_id, value)
push_data_to_gradio_component(value, elem_id, load_type);
}
- else{
- if (load_default){
+ else {
+ if (load_default) {
console.log('加载cookie的默认值', elem_id, load_default_value)
push_data_to_gradio_component(load_default_value, elem_id, load_type);
}
@@ -897,11 +857,24 @@ function gpt_academic_gradio_saveload(
}
}
-async function init_frontend_with_cookies(dark, prompt, live2d) {
- let searchString = "输入清除键";
- let bool_value = "False";
- ////////////////// darkmode ///////////////////
+async function GptAcademicJavaScriptInit(dark, prompt, live2d, layout) {
+ // 第一部分,布局初始化
+ audio_fn_init();
+ minor_ui_adjustment();
+ chatbotIndicator = gradioApp().querySelector('#gpt-chatbot > div.wrap');
+ var chatbotObserver = new MutationObserver(() => {
+ chatbotContentChanged(1);
+ });
+ chatbotObserver.observe(chatbotIndicator, { attributes: true, childList: true, subtree: true });
+ if (layout === "LEFT-RIGHT") { chatbotAutoHeight(); }
+ if (layout === "LEFT-RIGHT") { limit_scroll_position(); }
+
+ // 第二部分,读取Cookie,初始话界面
+ let searchString = "";
+ let bool_value = "";
+
+ // darkmode 深色模式
if (getCookie("js_darkmode_cookie")) {
dark = getCookie("js_darkmode_cookie")
}
@@ -916,12 +889,13 @@ async function init_frontend_with_cookies(dark, prompt, live2d) {
}
}
- ////////////////////// SysPrompt ///////////////////////////
+ // SysPrompt 系统静默提示词
gpt_academic_gradio_saveload("load", "elem_prompt", "js_system_prompt_cookie", null, "str");
- ////////////////////// Temperature ///////////////////////////
+
+ // Temperature 大模型温度参数
gpt_academic_gradio_saveload("load", "elem_temperature", "js_temperature_cookie", null, "float");
- ////////////////////// clearButton ///////////////////////////
+ // clearButton 自动清除按钮
if (getCookie("js_clearbtn_show_cookie")) {
// have cookie
bool_value = getCookie("js_clearbtn_show_cookie")
@@ -949,7 +923,7 @@ async function init_frontend_with_cookies(dark, prompt, live2d) {
}
}
- ////////////////////// live2d ///////////////////////////
+ // live2d 显示
if (getCookie("js_live2d_show_cookie")) {
// have cookie
searchString = "添加Live2D形象";
diff --git a/themes/theme.py b/themes/theme.py
index c3476f9..6ccf36b 100644
--- a/themes/theme.py
+++ b/themes/theme.py
@@ -48,7 +48,7 @@ adjust_theme, advanced_css, theme_declaration, _ = load_dynamic_theme(get_conf("
cookie相关工具函数
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
"""
-def init_cookie(cookies):
+def assign_user_uuid(cookies):
# 为每一位访问的用户赋予一个独一无二的uuid编码
cookies.update({"uuid": uuid.uuid4()})
return cookies
@@ -106,8 +106,8 @@ js_code_for_toggle_darkmode = """() => {
}"""
-js_code_for_persistent_cookie_init = """(py_pickle_cookie, cookie) => {
- return [getCookie("py_pickle_cookie"), cookie];
+js_code_for_persistent_cookie_init = """(web_cookie_cache, cookie) => {
+ return [getCookie("web_cookie_cache"), cookie];
}
"""
diff --git a/toolbox.py b/toolbox.py
index 1278216..b25984d 100644
--- a/toolbox.py
+++ b/toolbox.py
@@ -535,17 +535,13 @@ def on_file_uploaded(
def on_report_generated(cookies:dict, files:List[str], chatbot:ChatBotWithCookies):
- # from toolbox import find_recent_files
- # PATH_LOGGING = get_conf('PATH_LOGGING')
if "files_to_promote" in cookies:
report_files = cookies["files_to_promote"]
cookies.pop("files_to_promote")
else:
report_files = []
- # report_files = find_recent_files(PATH_LOGGING)
if len(report_files) == 0:
return cookies, None, chatbot
- # files.extend(report_files)
file_links = ""
for f in report_files:
file_links += (
@@ -1009,10 +1005,13 @@ def check_repeat_upload(new_pdf_path, pdf_hash):
return False, None
def log_chat(llm_model: str, input_str: str, output_str: str):
- if output_str and input_str and llm_model:
- uid = str(uuid.uuid4().hex)
- logging.info(f"[Model({uid})] {llm_model}")
- input_str = input_str.rstrip('\n')
- logging.info(f"[Query({uid})]\n{input_str}")
- output_str = output_str.rstrip('\n')
- logging.info(f"[Response({uid})]\n{output_str}\n\n")
+ try:
+ if output_str and input_str and llm_model:
+ uid = str(uuid.uuid4().hex)
+ logging.info(f"[Model({uid})] {llm_model}")
+ input_str = input_str.rstrip('\n')
+ logging.info(f"[Query({uid})]\n{input_str}")
+ output_str = output_str.rstrip('\n')
+ logging.info(f"[Response({uid})]\n{output_str}\n\n")
+ except:
+ print(trimmed_format_exc())
diff --git a/version b/version
index ed934e2..5d450de 100644
--- a/version
+++ b/version
@@ -1,5 +1,5 @@
{
- "version": 3.73,
+ "version": 3.74,
"show_feature": true,
- "new_feature": "优化oneapi接入方法 <-> 接入月之暗面模型 <-> 支持切换多个智谱ai模型 <-> 用绘图功能增强部分插件 <-> 基础功能区支持自动切换中英提示词 <-> 支持Mermaid绘图库(让大模型绘制脑图)"
+ "new_feature": "增加多用户文件鉴权验证提高安全性 <-> 优化oneapi接入方法 <-> 接入Cohere和月之暗面模型 <-> 简化挂载二级目录的步骤 <-> 支持Mermaid绘图库(让大模型绘制脑图)"
}