允许加入ChatGLM微调模型
This commit is contained in:
parent
7ce4192c52
commit
c010d50716
@ -74,6 +74,10 @@ AVAIL_LLM_MODELS = ["gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5", "api2
|
|||||||
# P.S. 其他可用的模型还包括 ["gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "newbing-free", "jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
# P.S. 其他可用的模型还包括 ["gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "newbing-free", "jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
||||||
|
|
||||||
|
|
||||||
|
# ChatGLM(2) Finetune Model Path (如果使用ChatGLM2微调模型,需要把"chatglmft"加入AVAIL_LLM_MODELS中)
|
||||||
|
ChatGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b-pt-128-1e-2/checkpoint-100"
|
||||||
|
|
||||||
|
|
||||||
# 本地LLM模型如ChatGLM的执行方式 CPU/GPU
|
# 本地LLM模型如ChatGLM的执行方式 CPU/GPU
|
||||||
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
|
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
|
||||||
|
|
||||||
|
@ -69,3 +69,57 @@ def 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
|
|
||||||
promote_file_to_downloadzone(txt+'.generated.json', rename_file='generated.json', chatbot=chatbot)
|
promote_file_to_downloadzone(txt+'.generated.json', rename_file='generated.json', chatbot=chatbot)
|
||||||
return
|
return
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def 启动微调(arguments):
|
||||||
|
"""
|
||||||
|
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||||
|
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||||
|
plugin_kwargs 插件模型的参数
|
||||||
|
chatbot 聊天显示框的句柄,用于显示给用户
|
||||||
|
history 聊天历史,前情提要
|
||||||
|
system_prompt 给gpt的静默提醒
|
||||||
|
web_port 当前软件运行的端口号
|
||||||
|
"""
|
||||||
|
history = [] # 清空历史,以免输入溢出
|
||||||
|
import subprocess
|
||||||
|
PRE_SEQ_LEN = 128
|
||||||
|
LR = 2e-2
|
||||||
|
NUM_GPUS = 1
|
||||||
|
JSON_FILE = 't_code.json'
|
||||||
|
tune_work_path = '/home/hmp/ChatGLM2-6B/ptuning'
|
||||||
|
|
||||||
|
command = f"torchrun --standalone --nnodes=1 --nproc-per-node={NUM_GPUS} main.py \
|
||||||
|
--do_train \
|
||||||
|
--train_file AdvertiseGen/{JSON_FILE} \
|
||||||
|
--validation_file AdvertiseGen/{JSON_FILE} \
|
||||||
|
--preprocessing_num_workers 20 \
|
||||||
|
--prompt_column content \
|
||||||
|
--response_column summary \
|
||||||
|
--overwrite_cache \
|
||||||
|
--model_name_or_path THUDM/chatglm2-6b \
|
||||||
|
--output_dir output/clothgen-chatglm2-6b-pt-{PRE_SEQ_LEN}-{LR} \
|
||||||
|
--overwrite_output_dir \
|
||||||
|
--max_source_length 256 \
|
||||||
|
--max_target_length 256 \
|
||||||
|
--per_device_train_batch_size 1 \
|
||||||
|
--per_device_eval_batch_size 1 \
|
||||||
|
--gradient_accumulation_steps 16 \
|
||||||
|
--predict_with_generate \
|
||||||
|
--max_steps 100 \
|
||||||
|
--logging_steps 10 \
|
||||||
|
--save_steps 20 \
|
||||||
|
--learning_rate {LR} \
|
||||||
|
--pre_seq_len {PRE_SEQ_LEN} \
|
||||||
|
--quantization_bit 4"
|
||||||
|
|
||||||
|
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=tune_work_path)
|
||||||
|
try:
|
||||||
|
stdout, stderr = process.communicate(timeout=3600*5)
|
||||||
|
except subprocess.TimeoutExpired:
|
||||||
|
process.kill()
|
||||||
|
stdout, stderr = process.communicate()
|
||||||
|
print("Process timed out!")
|
||||||
|
return False
|
||||||
|
return
|
||||||
|
@ -269,6 +269,24 @@ if "newbing" in AVAIL_LLM_MODELS: # same with newbing-free
|
|||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
|
if "chatglmft" in AVAIL_LLM_MODELS: # same with newbing-free
|
||||||
|
try:
|
||||||
|
from .bridge_chatglmft import predict_no_ui_long_connection as chatglmft_noui
|
||||||
|
from .bridge_chatglmft import predict as chatglmft_ui
|
||||||
|
# claude
|
||||||
|
model_info.update({
|
||||||
|
"chatglmft": {
|
||||||
|
"fn_with_ui": chatglmft_ui,
|
||||||
|
"fn_without_ui": chatglmft_noui,
|
||||||
|
"endpoint": None,
|
||||||
|
"max_token": 4096,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
}
|
||||||
|
})
|
||||||
|
except:
|
||||||
|
print(trimmed_format_exc())
|
||||||
|
|
||||||
|
|
||||||
def LLM_CATCH_EXCEPTION(f):
|
def LLM_CATCH_EXCEPTION(f):
|
||||||
"""
|
"""
|
||||||
@ -372,6 +390,6 @@ def predict(inputs, llm_kwargs, *args, **kwargs):
|
|||||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||||
"""
|
"""
|
||||||
|
|
||||||
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"]
|
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"] # 如果这里报错,检查config中的AVAIL_LLM_MODELS选项
|
||||||
yield from method(inputs, llm_kwargs, *args, **kwargs)
|
yield from method(inputs, llm_kwargs, *args, **kwargs)
|
||||||
|
|
||||||
|
210
request_llm/bridge_chatglmft.py
Normal file
210
request_llm/bridge_chatglmft.py
Normal file
@ -0,0 +1,210 @@
|
|||||||
|
|
||||||
|
from transformers import AutoModel, AutoTokenizer
|
||||||
|
import time
|
||||||
|
import os
|
||||||
|
import json
|
||||||
|
import threading
|
||||||
|
import importlib
|
||||||
|
from toolbox import update_ui, get_conf
|
||||||
|
from multiprocessing import Process, Pipe
|
||||||
|
|
||||||
|
load_message = "ChatGLMFT尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLMFT消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||||
|
|
||||||
|
def string_to_options(arguments):
|
||||||
|
import argparse
|
||||||
|
import shlex
|
||||||
|
# Create an argparse.ArgumentParser instance
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
# Add command-line arguments
|
||||||
|
parser.add_argument("--llm_to_learn", type=str, help="LLM model to learn", default="gpt-3.5-turbo")
|
||||||
|
parser.add_argument("--prompt_prefix", type=str, help="Prompt prefix", default='')
|
||||||
|
parser.add_argument("--system_prompt", type=str, help="System prompt", default='')
|
||||||
|
parser.add_argument("--batch", type=int, help="System prompt", default=50)
|
||||||
|
# Parse the arguments
|
||||||
|
args = parser.parse_args(shlex.split(arguments))
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
#################################################################################
|
||||||
|
class GetGLMFTHandle(Process):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(daemon=True)
|
||||||
|
self.parent, self.child = Pipe()
|
||||||
|
self.chatglmft_model = None
|
||||||
|
self.chatglmft_tokenizer = None
|
||||||
|
self.info = ""
|
||||||
|
self.success = True
|
||||||
|
self.check_dependency()
|
||||||
|
self.start()
|
||||||
|
self.threadLock = threading.Lock()
|
||||||
|
|
||||||
|
def check_dependency(self):
|
||||||
|
try:
|
||||||
|
import sentencepiece
|
||||||
|
self.info = "依赖检测通过"
|
||||||
|
self.success = True
|
||||||
|
except:
|
||||||
|
self.info = "缺少ChatGLMFT的依赖,如果要使用ChatGLMFT,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_chatglm.txt`安装ChatGLM的依赖。"
|
||||||
|
self.success = False
|
||||||
|
|
||||||
|
def ready(self):
|
||||||
|
return self.chatglmft_model is not None
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
# 子进程执行
|
||||||
|
# 第一次运行,加载参数
|
||||||
|
retry = 0
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
if self.chatglmft_model is None:
|
||||||
|
from transformers import AutoConfig
|
||||||
|
import torch
|
||||||
|
# conf = 'request_llm/current_ptune_model.json'
|
||||||
|
# if not os.path.exists(conf): raise RuntimeError('找不到微调模型信息')
|
||||||
|
# with open(conf, 'r', encoding='utf8') as f:
|
||||||
|
# model_args = json.loads(f.read())
|
||||||
|
ChatGLM_PTUNING_CHECKPOINT, = get_conf('ChatGLM_PTUNING_CHECKPOINT')
|
||||||
|
assert os.path.exists(ChatGLM_PTUNING_CHECKPOINT), "找不到微调模型检查点"
|
||||||
|
conf = os.path.join(ChatGLM_PTUNING_CHECKPOINT, "config.json")
|
||||||
|
with open(conf, 'r', encoding='utf8') as f:
|
||||||
|
model_args = json.loads(f.read())
|
||||||
|
if 'model_name_or_path' not in model_args:
|
||||||
|
model_args['model_name_or_path'] = model_args['_name_or_path']
|
||||||
|
self.chatglmft_tokenizer = AutoTokenizer.from_pretrained(
|
||||||
|
model_args['model_name_or_path'], trust_remote_code=True)
|
||||||
|
config = AutoConfig.from_pretrained(
|
||||||
|
model_args['model_name_or_path'], trust_remote_code=True)
|
||||||
|
|
||||||
|
config.pre_seq_len = model_args['pre_seq_len']
|
||||||
|
config.prefix_projection = model_args['prefix_projection']
|
||||||
|
|
||||||
|
print(f"Loading prefix_encoder weight from {ChatGLM_PTUNING_CHECKPOINT}")
|
||||||
|
model = AutoModel.from_pretrained(model_args['model_name_or_path'], config=config, trust_remote_code=True)
|
||||||
|
prefix_state_dict = torch.load(os.path.join(ChatGLM_PTUNING_CHECKPOINT, "pytorch_model.bin"))
|
||||||
|
new_prefix_state_dict = {}
|
||||||
|
for k, v in prefix_state_dict.items():
|
||||||
|
if k.startswith("transformer.prefix_encoder."):
|
||||||
|
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
|
||||||
|
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
|
||||||
|
|
||||||
|
if model_args['quantization_bit'] is not None:
|
||||||
|
print(f"Quantized to {model_args['quantization_bit']} bit")
|
||||||
|
model = model.quantize(model_args['quantization_bit'])
|
||||||
|
model = model.cuda()
|
||||||
|
if model_args['pre_seq_len'] is not None:
|
||||||
|
# P-tuning v2
|
||||||
|
model.transformer.prefix_encoder.float()
|
||||||
|
self.chatglmft_model = model.eval()
|
||||||
|
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
except Exception as e:
|
||||||
|
retry += 1
|
||||||
|
if retry > 3:
|
||||||
|
self.child.send('[Local Message] Call ChatGLMFT fail 不能正常加载ChatGLMFT的参数。')
|
||||||
|
raise RuntimeError("不能正常加载ChatGLMFT的参数!")
|
||||||
|
|
||||||
|
while True:
|
||||||
|
# 进入任务等待状态
|
||||||
|
kwargs = self.child.recv()
|
||||||
|
# 收到消息,开始请求
|
||||||
|
try:
|
||||||
|
for response, history in self.chatglmft_model.stream_chat(self.chatglmft_tokenizer, **kwargs):
|
||||||
|
self.child.send(response)
|
||||||
|
# # 中途接收可能的终止指令(如果有的话)
|
||||||
|
# if self.child.poll():
|
||||||
|
# command = self.child.recv()
|
||||||
|
# if command == '[Terminate]': break
|
||||||
|
except:
|
||||||
|
from toolbox import trimmed_format_exc
|
||||||
|
self.child.send('[Local Message] Call ChatGLMFT fail.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
|
||||||
|
# 请求处理结束,开始下一个循环
|
||||||
|
self.child.send('[Finish]')
|
||||||
|
|
||||||
|
def stream_chat(self, **kwargs):
|
||||||
|
# 主进程执行
|
||||||
|
self.threadLock.acquire()
|
||||||
|
self.parent.send(kwargs)
|
||||||
|
while True:
|
||||||
|
res = self.parent.recv()
|
||||||
|
if res != '[Finish]':
|
||||||
|
yield res
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
self.threadLock.release()
|
||||||
|
|
||||||
|
global glmft_handle
|
||||||
|
glmft_handle = None
|
||||||
|
#################################################################################
|
||||||
|
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||||
|
"""
|
||||||
|
多线程方法
|
||||||
|
函数的说明请见 request_llm/bridge_all.py
|
||||||
|
"""
|
||||||
|
global glmft_handle
|
||||||
|
if glmft_handle is None:
|
||||||
|
glmft_handle = GetGLMFTHandle()
|
||||||
|
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + glmft_handle.info
|
||||||
|
if not glmft_handle.success:
|
||||||
|
error = glmft_handle.info
|
||||||
|
glmft_handle = None
|
||||||
|
raise RuntimeError(error)
|
||||||
|
|
||||||
|
# chatglmft 没有 sys_prompt 接口,因此把prompt加入 history
|
||||||
|
history_feedin = []
|
||||||
|
history_feedin.append(["What can I do?", sys_prompt])
|
||||||
|
for i in range(len(history)//2):
|
||||||
|
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||||
|
|
||||||
|
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
||||||
|
response = ""
|
||||||
|
for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||||
|
if len(observe_window) >= 1: observe_window[0] = response
|
||||||
|
if len(observe_window) >= 2:
|
||||||
|
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||||
|
raise RuntimeError("程序终止。")
|
||||||
|
return response
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||||
|
"""
|
||||||
|
单线程方法
|
||||||
|
函数的说明请见 request_llm/bridge_all.py
|
||||||
|
"""
|
||||||
|
chatbot.append((inputs, ""))
|
||||||
|
|
||||||
|
global glmft_handle
|
||||||
|
if glmft_handle is None:
|
||||||
|
glmft_handle = GetGLMFTHandle()
|
||||||
|
chatbot[-1] = (inputs, load_message + "\n\n" + glmft_handle.info)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=[])
|
||||||
|
if not glmft_handle.success:
|
||||||
|
glmft_handle = None
|
||||||
|
return
|
||||||
|
|
||||||
|
if additional_fn is not None:
|
||||||
|
import core_functional
|
||||||
|
importlib.reload(core_functional) # 热更新prompt
|
||||||
|
core_functional = core_functional.get_core_functions()
|
||||||
|
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
|
||||||
|
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
|
||||||
|
|
||||||
|
# 处理历史信息
|
||||||
|
history_feedin = []
|
||||||
|
history_feedin.append(["What can I do?", system_prompt] )
|
||||||
|
for i in range(len(history)//2):
|
||||||
|
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||||
|
|
||||||
|
# 开始接收chatglmft的回复
|
||||||
|
response = "[Local Message]: 等待ChatGLMFT响应中 ..."
|
||||||
|
for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||||
|
chatbot[-1] = (inputs, response)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
|
||||||
|
# 总结输出
|
||||||
|
if response == "[Local Message]: 等待ChatGLMFT响应中 ...":
|
||||||
|
response = "[Local Message]: ChatGLMFT响应异常 ..."
|
||||||
|
history.extend([inputs, response])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history)
|
Loading…
x
Reference in New Issue
Block a user