允许加入ChatGLM微调模型
This commit is contained in:
		
							parent
							
								
									7ce4192c52
								
							
						
					
					
						commit
						c010d50716
					
				@ -74,6 +74,10 @@ AVAIL_LLM_MODELS = ["gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5", "api2
 | 
				
			|||||||
# P.S. 其他可用的模型还包括 ["gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "newbing-free", "jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
 | 
					# P.S. 其他可用的模型还包括 ["gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "newbing-free", "jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# ChatGLM(2) Finetune Model Path (如果使用ChatGLM2微调模型,需要把"chatglmft"加入AVAIL_LLM_MODELS中)
 | 
				
			||||||
 | 
					ChatGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b-pt-128-1e-2/checkpoint-100"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# 本地LLM模型如ChatGLM的执行方式 CPU/GPU
 | 
					# 本地LLM模型如ChatGLM的执行方式 CPU/GPU
 | 
				
			||||||
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
 | 
					LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
@ -69,3 +69,57 @@ def 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    promote_file_to_downloadzone(txt+'.generated.json', rename_file='generated.json', chatbot=chatbot)
 | 
					    promote_file_to_downloadzone(txt+'.generated.json', rename_file='generated.json', chatbot=chatbot)
 | 
				
			||||||
    return
 | 
					    return
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def 启动微调(arguments):
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    txt             输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
 | 
				
			||||||
 | 
					    llm_kwargs      gpt模型参数,如温度和top_p等,一般原样传递下去就行
 | 
				
			||||||
 | 
					    plugin_kwargs   插件模型的参数
 | 
				
			||||||
 | 
					    chatbot         聊天显示框的句柄,用于显示给用户
 | 
				
			||||||
 | 
					    history         聊天历史,前情提要
 | 
				
			||||||
 | 
					    system_prompt   给gpt的静默提醒
 | 
				
			||||||
 | 
					    web_port        当前软件运行的端口号
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    history = []    # 清空历史,以免输入溢出
 | 
				
			||||||
 | 
					    import subprocess
 | 
				
			||||||
 | 
					    PRE_SEQ_LEN = 128
 | 
				
			||||||
 | 
					    LR = 2e-2
 | 
				
			||||||
 | 
					    NUM_GPUS = 1
 | 
				
			||||||
 | 
					    JSON_FILE = 't_code.json'
 | 
				
			||||||
 | 
					    tune_work_path = '/home/hmp/ChatGLM2-6B/ptuning'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    command = f"torchrun --standalone --nnodes=1 --nproc-per-node={NUM_GPUS} main.py \
 | 
				
			||||||
 | 
					        --do_train \
 | 
				
			||||||
 | 
					        --train_file AdvertiseGen/{JSON_FILE} \
 | 
				
			||||||
 | 
					        --validation_file AdvertiseGen/{JSON_FILE} \
 | 
				
			||||||
 | 
					        --preprocessing_num_workers 20 \
 | 
				
			||||||
 | 
					        --prompt_column content \
 | 
				
			||||||
 | 
					        --response_column summary \
 | 
				
			||||||
 | 
					        --overwrite_cache \
 | 
				
			||||||
 | 
					        --model_name_or_path THUDM/chatglm2-6b \
 | 
				
			||||||
 | 
					        --output_dir output/clothgen-chatglm2-6b-pt-{PRE_SEQ_LEN}-{LR} \
 | 
				
			||||||
 | 
					        --overwrite_output_dir \
 | 
				
			||||||
 | 
					        --max_source_length 256 \
 | 
				
			||||||
 | 
					        --max_target_length 256 \
 | 
				
			||||||
 | 
					        --per_device_train_batch_size 1 \
 | 
				
			||||||
 | 
					        --per_device_eval_batch_size 1 \
 | 
				
			||||||
 | 
					        --gradient_accumulation_steps 16 \
 | 
				
			||||||
 | 
					        --predict_with_generate \
 | 
				
			||||||
 | 
					        --max_steps 100 \
 | 
				
			||||||
 | 
					        --logging_steps 10 \
 | 
				
			||||||
 | 
					        --save_steps 20 \
 | 
				
			||||||
 | 
					        --learning_rate {LR} \
 | 
				
			||||||
 | 
					        --pre_seq_len {PRE_SEQ_LEN} \
 | 
				
			||||||
 | 
					        --quantization_bit 4"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=tune_work_path)
 | 
				
			||||||
 | 
					    try:
 | 
				
			||||||
 | 
					        stdout, stderr = process.communicate(timeout=3600*5)
 | 
				
			||||||
 | 
					    except subprocess.TimeoutExpired:
 | 
				
			||||||
 | 
					        process.kill()
 | 
				
			||||||
 | 
					        stdout, stderr = process.communicate()
 | 
				
			||||||
 | 
					        print("Process timed out!")
 | 
				
			||||||
 | 
					        return False
 | 
				
			||||||
 | 
					    return
 | 
				
			||||||
 | 
				
			|||||||
@ -269,6 +269,24 @@ if "newbing" in AVAIL_LLM_MODELS:   # same with newbing-free
 | 
				
			|||||||
        })
 | 
					        })
 | 
				
			||||||
    except:
 | 
					    except:
 | 
				
			||||||
        print(trimmed_format_exc())
 | 
					        print(trimmed_format_exc())
 | 
				
			||||||
 | 
					if "chatglmft" in AVAIL_LLM_MODELS:   # same with newbing-free
 | 
				
			||||||
 | 
					    try:
 | 
				
			||||||
 | 
					        from .bridge_chatglmft import predict_no_ui_long_connection as chatglmft_noui
 | 
				
			||||||
 | 
					        from .bridge_chatglmft import predict as chatglmft_ui
 | 
				
			||||||
 | 
					        # claude
 | 
				
			||||||
 | 
					        model_info.update({
 | 
				
			||||||
 | 
					            "chatglmft": {
 | 
				
			||||||
 | 
					                "fn_with_ui": chatglmft_ui,
 | 
				
			||||||
 | 
					                "fn_without_ui": chatglmft_noui,
 | 
				
			||||||
 | 
					                "endpoint": None,
 | 
				
			||||||
 | 
					                "max_token": 4096,
 | 
				
			||||||
 | 
					                "tokenizer": tokenizer_gpt35,
 | 
				
			||||||
 | 
					                "token_cnt": get_token_num_gpt35,
 | 
				
			||||||
 | 
					            }
 | 
				
			||||||
 | 
					        })
 | 
				
			||||||
 | 
					    except:
 | 
				
			||||||
 | 
					        print(trimmed_format_exc())
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def LLM_CATCH_EXCEPTION(f):
 | 
					def LLM_CATCH_EXCEPTION(f):
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
@ -372,6 +390,6 @@ def predict(inputs, llm_kwargs, *args, **kwargs):
 | 
				
			|||||||
    additional_fn代表点击的哪个按钮,按钮见functional.py
 | 
					    additional_fn代表点击的哪个按钮,按钮见functional.py
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    method = model_info[llm_kwargs['llm_model']]["fn_with_ui"]
 | 
					    method = model_info[llm_kwargs['llm_model']]["fn_with_ui"]  # 如果这里报错,检查config中的AVAIL_LLM_MODELS选项
 | 
				
			||||||
    yield from method(inputs, llm_kwargs, *args, **kwargs)
 | 
					    yield from method(inputs, llm_kwargs, *args, **kwargs)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
							
								
								
									
										210
									
								
								request_llm/bridge_chatglmft.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										210
									
								
								request_llm/bridge_chatglmft.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,210 @@
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
 | 
					from transformers import AutoModel, AutoTokenizer
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					import os
 | 
				
			||||||
 | 
					import json
 | 
				
			||||||
 | 
					import threading
 | 
				
			||||||
 | 
					import importlib
 | 
				
			||||||
 | 
					from toolbox import update_ui, get_conf
 | 
				
			||||||
 | 
					from multiprocessing import Process, Pipe
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					load_message = "ChatGLMFT尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLMFT消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def string_to_options(arguments):
 | 
				
			||||||
 | 
					    import argparse
 | 
				
			||||||
 | 
					    import shlex
 | 
				
			||||||
 | 
					    # Create an argparse.ArgumentParser instance
 | 
				
			||||||
 | 
					    parser = argparse.ArgumentParser()
 | 
				
			||||||
 | 
					    # Add command-line arguments
 | 
				
			||||||
 | 
					    parser.add_argument("--llm_to_learn", type=str, help="LLM model to learn", default="gpt-3.5-turbo")
 | 
				
			||||||
 | 
					    parser.add_argument("--prompt_prefix", type=str, help="Prompt prefix", default='')
 | 
				
			||||||
 | 
					    parser.add_argument("--system_prompt", type=str, help="System prompt", default='')
 | 
				
			||||||
 | 
					    parser.add_argument("--batch", type=int, help="System prompt", default=50)
 | 
				
			||||||
 | 
					    # Parse the arguments
 | 
				
			||||||
 | 
					    args = parser.parse_args(shlex.split(arguments))
 | 
				
			||||||
 | 
					    return args
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#################################################################################
 | 
				
			||||||
 | 
					class GetGLMFTHandle(Process):
 | 
				
			||||||
 | 
					    def __init__(self):
 | 
				
			||||||
 | 
					        super().__init__(daemon=True)
 | 
				
			||||||
 | 
					        self.parent, self.child = Pipe()
 | 
				
			||||||
 | 
					        self.chatglmft_model = None
 | 
				
			||||||
 | 
					        self.chatglmft_tokenizer = None
 | 
				
			||||||
 | 
					        self.info = ""
 | 
				
			||||||
 | 
					        self.success = True
 | 
				
			||||||
 | 
					        self.check_dependency()
 | 
				
			||||||
 | 
					        self.start()
 | 
				
			||||||
 | 
					        self.threadLock = threading.Lock()
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					    def check_dependency(self):
 | 
				
			||||||
 | 
					        try:
 | 
				
			||||||
 | 
					            import sentencepiece
 | 
				
			||||||
 | 
					            self.info = "依赖检测通过"
 | 
				
			||||||
 | 
					            self.success = True
 | 
				
			||||||
 | 
					        except:
 | 
				
			||||||
 | 
					            self.info = "缺少ChatGLMFT的依赖,如果要使用ChatGLMFT,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_chatglm.txt`安装ChatGLM的依赖。"
 | 
				
			||||||
 | 
					            self.success = False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def ready(self):
 | 
				
			||||||
 | 
					        return self.chatglmft_model is not None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def run(self):
 | 
				
			||||||
 | 
					        # 子进程执行
 | 
				
			||||||
 | 
					        # 第一次运行,加载参数
 | 
				
			||||||
 | 
					        retry = 0
 | 
				
			||||||
 | 
					        while True:
 | 
				
			||||||
 | 
					            try:
 | 
				
			||||||
 | 
					                if self.chatglmft_model is None:
 | 
				
			||||||
 | 
					                    from transformers import AutoConfig
 | 
				
			||||||
 | 
					                    import torch
 | 
				
			||||||
 | 
					                    # conf = 'request_llm/current_ptune_model.json'
 | 
				
			||||||
 | 
					                    # if not os.path.exists(conf): raise RuntimeError('找不到微调模型信息')
 | 
				
			||||||
 | 
					                    # with open(conf, 'r', encoding='utf8') as f:
 | 
				
			||||||
 | 
					                    #     model_args = json.loads(f.read())
 | 
				
			||||||
 | 
					                    ChatGLM_PTUNING_CHECKPOINT, = get_conf('ChatGLM_PTUNING_CHECKPOINT')
 | 
				
			||||||
 | 
					                    assert os.path.exists(ChatGLM_PTUNING_CHECKPOINT), "找不到微调模型检查点"
 | 
				
			||||||
 | 
					                    conf = os.path.join(ChatGLM_PTUNING_CHECKPOINT, "config.json")
 | 
				
			||||||
 | 
					                    with open(conf, 'r', encoding='utf8') as f:
 | 
				
			||||||
 | 
					                        model_args = json.loads(f.read())
 | 
				
			||||||
 | 
					                    if 'model_name_or_path' not in model_args:
 | 
				
			||||||
 | 
					                        model_args['model_name_or_path'] = model_args['_name_or_path']
 | 
				
			||||||
 | 
					                    self.chatglmft_tokenizer = AutoTokenizer.from_pretrained(
 | 
				
			||||||
 | 
					                        model_args['model_name_or_path'], trust_remote_code=True)
 | 
				
			||||||
 | 
					                    config = AutoConfig.from_pretrained(
 | 
				
			||||||
 | 
					                        model_args['model_name_or_path'], trust_remote_code=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                    config.pre_seq_len = model_args['pre_seq_len']
 | 
				
			||||||
 | 
					                    config.prefix_projection = model_args['prefix_projection']
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                    print(f"Loading prefix_encoder weight from {ChatGLM_PTUNING_CHECKPOINT}")
 | 
				
			||||||
 | 
					                    model = AutoModel.from_pretrained(model_args['model_name_or_path'], config=config, trust_remote_code=True)
 | 
				
			||||||
 | 
					                    prefix_state_dict = torch.load(os.path.join(ChatGLM_PTUNING_CHECKPOINT, "pytorch_model.bin"))
 | 
				
			||||||
 | 
					                    new_prefix_state_dict = {}
 | 
				
			||||||
 | 
					                    for k, v in prefix_state_dict.items():
 | 
				
			||||||
 | 
					                        if k.startswith("transformer.prefix_encoder."):
 | 
				
			||||||
 | 
					                            new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
 | 
				
			||||||
 | 
					                    model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                    if model_args['quantization_bit'] is not None:
 | 
				
			||||||
 | 
					                        print(f"Quantized to {model_args['quantization_bit']} bit")
 | 
				
			||||||
 | 
					                        model = model.quantize(model_args['quantization_bit'])
 | 
				
			||||||
 | 
					                    model = model.cuda()
 | 
				
			||||||
 | 
					                    if model_args['pre_seq_len'] is not None:
 | 
				
			||||||
 | 
					                        # P-tuning v2
 | 
				
			||||||
 | 
					                        model.transformer.prefix_encoder.float()
 | 
				
			||||||
 | 
					                    self.chatglmft_model = model.eval()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                    break
 | 
				
			||||||
 | 
					                else:
 | 
				
			||||||
 | 
					                    break
 | 
				
			||||||
 | 
					            except Exception as e:
 | 
				
			||||||
 | 
					                retry += 1
 | 
				
			||||||
 | 
					                if retry > 3: 
 | 
				
			||||||
 | 
					                    self.child.send('[Local Message] Call ChatGLMFT fail 不能正常加载ChatGLMFT的参数。')
 | 
				
			||||||
 | 
					                    raise RuntimeError("不能正常加载ChatGLMFT的参数!")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        while True:
 | 
				
			||||||
 | 
					            # 进入任务等待状态
 | 
				
			||||||
 | 
					            kwargs = self.child.recv()
 | 
				
			||||||
 | 
					            # 收到消息,开始请求
 | 
				
			||||||
 | 
					            try:
 | 
				
			||||||
 | 
					                for response, history in self.chatglmft_model.stream_chat(self.chatglmft_tokenizer, **kwargs):
 | 
				
			||||||
 | 
					                    self.child.send(response)
 | 
				
			||||||
 | 
					                    # # 中途接收可能的终止指令(如果有的话)
 | 
				
			||||||
 | 
					                    # if self.child.poll(): 
 | 
				
			||||||
 | 
					                    #     command = self.child.recv()
 | 
				
			||||||
 | 
					                    #     if command == '[Terminate]': break
 | 
				
			||||||
 | 
					            except:
 | 
				
			||||||
 | 
					                from toolbox import trimmed_format_exc
 | 
				
			||||||
 | 
					                self.child.send('[Local Message] Call ChatGLMFT fail.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
 | 
				
			||||||
 | 
					            # 请求处理结束,开始下一个循环
 | 
				
			||||||
 | 
					            self.child.send('[Finish]')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def stream_chat(self, **kwargs):
 | 
				
			||||||
 | 
					        # 主进程执行
 | 
				
			||||||
 | 
					        self.threadLock.acquire()
 | 
				
			||||||
 | 
					        self.parent.send(kwargs)
 | 
				
			||||||
 | 
					        while True:
 | 
				
			||||||
 | 
					            res = self.parent.recv()
 | 
				
			||||||
 | 
					            if res != '[Finish]':
 | 
				
			||||||
 | 
					                yield res
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                break
 | 
				
			||||||
 | 
					        self.threadLock.release()
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					global glmft_handle
 | 
				
			||||||
 | 
					glmft_handle = None
 | 
				
			||||||
 | 
					#################################################################################
 | 
				
			||||||
 | 
					def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					        多线程方法
 | 
				
			||||||
 | 
					        函数的说明请见 request_llm/bridge_all.py
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    global glmft_handle
 | 
				
			||||||
 | 
					    if glmft_handle is None:
 | 
				
			||||||
 | 
					        glmft_handle = GetGLMFTHandle()
 | 
				
			||||||
 | 
					        if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + glmft_handle.info
 | 
				
			||||||
 | 
					        if not glmft_handle.success: 
 | 
				
			||||||
 | 
					            error = glmft_handle.info
 | 
				
			||||||
 | 
					            glmft_handle = None
 | 
				
			||||||
 | 
					            raise RuntimeError(error)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # chatglmft 没有 sys_prompt 接口,因此把prompt加入 history
 | 
				
			||||||
 | 
					    history_feedin = []
 | 
				
			||||||
 | 
					    history_feedin.append(["What can I do?", sys_prompt])
 | 
				
			||||||
 | 
					    for i in range(len(history)//2):
 | 
				
			||||||
 | 
					        history_feedin.append([history[2*i], history[2*i+1]] )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
 | 
				
			||||||
 | 
					    response = ""
 | 
				
			||||||
 | 
					    for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
 | 
				
			||||||
 | 
					        if len(observe_window) >= 1:  observe_window[0] = response
 | 
				
			||||||
 | 
					        if len(observe_window) >= 2:  
 | 
				
			||||||
 | 
					            if (time.time()-observe_window[1]) > watch_dog_patience:
 | 
				
			||||||
 | 
					                raise RuntimeError("程序终止。")
 | 
				
			||||||
 | 
					    return response
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					        单线程方法
 | 
				
			||||||
 | 
					        函数的说明请见 request_llm/bridge_all.py
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    chatbot.append((inputs, ""))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    global glmft_handle
 | 
				
			||||||
 | 
					    if glmft_handle is None:
 | 
				
			||||||
 | 
					        glmft_handle = GetGLMFTHandle()
 | 
				
			||||||
 | 
					        chatbot[-1] = (inputs, load_message + "\n\n" + glmft_handle.info)
 | 
				
			||||||
 | 
					        yield from update_ui(chatbot=chatbot, history=[])
 | 
				
			||||||
 | 
					        if not glmft_handle.success: 
 | 
				
			||||||
 | 
					            glmft_handle = None
 | 
				
			||||||
 | 
					            return
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if additional_fn is not None:
 | 
				
			||||||
 | 
					        import core_functional
 | 
				
			||||||
 | 
					        importlib.reload(core_functional)    # 热更新prompt
 | 
				
			||||||
 | 
					        core_functional = core_functional.get_core_functions()
 | 
				
			||||||
 | 
					        if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs)  # 获取预处理函数(如果有的话)
 | 
				
			||||||
 | 
					        inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 处理历史信息
 | 
				
			||||||
 | 
					    history_feedin = []
 | 
				
			||||||
 | 
					    history_feedin.append(["What can I do?", system_prompt] )
 | 
				
			||||||
 | 
					    for i in range(len(history)//2):
 | 
				
			||||||
 | 
					        history_feedin.append([history[2*i], history[2*i+1]] )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 开始接收chatglmft的回复
 | 
				
			||||||
 | 
					    response = "[Local Message]: 等待ChatGLMFT响应中 ..."
 | 
				
			||||||
 | 
					    for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
 | 
				
			||||||
 | 
					        chatbot[-1] = (inputs, response)
 | 
				
			||||||
 | 
					        yield from update_ui(chatbot=chatbot, history=history)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 总结输出
 | 
				
			||||||
 | 
					    if response == "[Local Message]: 等待ChatGLMFT响应中 ...":
 | 
				
			||||||
 | 
					        response = "[Local Message]: ChatGLMFT响应异常 ..."
 | 
				
			||||||
 | 
					    history.extend([inputs, response])
 | 
				
			||||||
 | 
					    yield from update_ui(chatbot=chatbot, history=history)
 | 
				
			||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user