diff --git a/check_proxy.py b/check_proxy.py
index 2df8185..99592f7 100644
--- a/check_proxy.py
+++ b/check_proxy.py
@@ -47,7 +47,7 @@ def backup_and_download(current_version, remote_version):
shutil.copytree('./', backup_dir, ignore=lambda x, y: ['history'])
proxies = get_conf('proxies')
try: r = requests.get('https://github.com/binary-husky/chatgpt_academic/archive/refs/heads/master.zip', proxies=proxies, stream=True)
- except: r = requests.get('https://public.gpt-academic.top/publish/master.zip', proxies=proxies, stream=True)
+ except: r = requests.get('https://public.agent-matrix.com/publish/master.zip', proxies=proxies, stream=True)
zip_file_path = backup_dir+'/master.zip'
with open(zip_file_path, 'wb+') as f:
f.write(r.content)
@@ -81,7 +81,7 @@ def patch_and_restart(path):
dir_util.copy_tree(path_new_version, './')
print亮绿('代码已经更新,即将更新pip包依赖……')
for i in reversed(range(5)): time.sleep(1); print(i)
- try:
+ try:
import subprocess
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-r', 'requirements.txt'])
except:
@@ -113,7 +113,7 @@ def auto_update(raise_error=False):
import json
proxies = get_conf('proxies')
try: response = requests.get("https://raw.githubusercontent.com/binary-husky/chatgpt_academic/master/version", proxies=proxies, timeout=5)
- except: response = requests.get("https://public.gpt-academic.top/publish/version", proxies=proxies, timeout=5)
+ except: response = requests.get("https://public.agent-matrix.com/publish/version", proxies=proxies, timeout=5)
remote_json_data = json.loads(response.text)
remote_version = remote_json_data['version']
if remote_json_data["show_feature"]:
@@ -159,7 +159,7 @@ def warm_up_modules():
enc.encode("模块预热", disallowed_special=())
enc = model_info["gpt-4"]['tokenizer']
enc.encode("模块预热", disallowed_special=())
-
+
def warm_up_vectordb():
print('正在执行一些模块的预热 ...')
from toolbox import ProxyNetworkActivate
@@ -167,7 +167,7 @@ def warm_up_vectordb():
import nltk
with ProxyNetworkActivate("Warmup_Modules"): nltk.download("punkt")
-
+
if __name__ == '__main__':
import os
os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
diff --git a/colorful.py b/colorful.py
index 9749861..f0414e5 100644
--- a/colorful.py
+++ b/colorful.py
@@ -3,7 +3,7 @@ from sys import stdout
if platform.system()=="Linux":
pass
-else:
+else:
from colorama import init
init()
diff --git a/config.py b/config.py
index 5c44b53..1bdb299 100644
--- a/config.py
+++ b/config.py
@@ -30,7 +30,32 @@ if USE_PROXY:
else:
proxies = None
-# ------------------------------------ 以下配置可以优化体验, 但大部分场合下并不需要修改 ------------------------------------
+# [step 3]>> 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
+LLM_MODEL = "gpt-3.5-turbo-16k" # 可选 ↓↓↓
+AVAIL_LLM_MODELS = ["gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
+ "gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
+ "gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-3-turbo",
+ "gemini-pro", "chatglm3"
+ ]
+# --- --- --- ---
+# P.S. 其他可用的模型还包括
+# AVAIL_LLM_MODELS = [
+# "qianfan", "deepseekcoder",
+# "spark", "sparkv2", "sparkv3", "sparkv3.5",
+# "qwen-turbo", "qwen-plus", "qwen-max", "qwen-local",
+# "moonshot-v1-128k", "moonshot-v1-32k", "moonshot-v1-8k",
+# "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0125"
+# "claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2",
+# "moss", "llama2", "chatglm_onnx", "internlm", "jittorllms_pangualpha", "jittorllms_llama",
+# ]
+# --- --- --- ---
+# 此外,为了更灵活地接入one-api多模型管理界面,您还可以在接入one-api时,
+# 使用"one-api-*"前缀直接使用非标准方式接入的模型,例如
+# AVAIL_LLM_MODELS = ["one-api-claude-3-sonnet-20240229(max_token=100000)"]
+# --- --- --- ---
+
+
+# --------------- 以下配置可以优化体验 ---------------
# 重新URL重新定向,实现更换API_URL的作用(高危设置! 常规情况下不要修改! 通过修改此设置,您将把您的API-KEY和对话隐私完全暴露给您设定的中间人!)
# 格式: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
@@ -85,22 +110,6 @@ MAX_RETRY = 2
DEFAULT_FN_GROUPS = ['对话', '编程', '学术', '智能体']
-# 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
-LLM_MODEL = "gpt-3.5-turbo-16k" # 可选 ↓↓↓
-AVAIL_LLM_MODELS = ["gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
- "gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
- "gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-3-turbo",
- "gemini-pro", "chatglm3", "claude-2"]
-# P.S. 其他可用的模型还包括 [
-# "moonshot-v1-128k", "moonshot-v1-32k", "moonshot-v1-8k",
-# "qwen-turbo", "qwen-plus", "qwen-max",
-# "zhipuai", "qianfan", "deepseekcoder", "llama2", "qwen-local", "gpt-3.5-turbo-0613", "moss",
-# "gpt-3.5-turbo-16k-0613", "gpt-3.5-random", "api2d-gpt-3.5-turbo", 'api2d-gpt-3.5-turbo-16k',
-# "spark", "sparkv2", "sparkv3", "sparkv3.5",
-# "chatglm_onnx", "claude-1-100k", "claude-2", "internlm", "jittorllms_pangualpha", "jittorllms_llama"
-# ]
-
-
# 定义界面上“询问多个GPT模型”插件应该使用哪些模型,请从AVAIL_LLM_MODELS中选择,并在不同模型之间用`&`间隔,例如"gpt-3.5-turbo&chatglm3&azure-gpt-4"
MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
@@ -129,6 +138,7 @@ CHATGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
LOCAL_MODEL_QUANT = "FP16" # 默认 "FP16" "INT4" 启用量化INT4版本 "INT8" 启用量化INT8版本
+
# 设置gradio的并行线程数(不需要修改)
CONCURRENT_COUNT = 100
@@ -174,14 +184,8 @@ AZURE_ENGINE = "填入你亲手写的部署名" # 读 docs\use_azure.
AZURE_CFG_ARRAY = {}
-# 使用Newbing (不推荐使用,未来将删除)
-NEWBING_STYLE = "creative" # ["creative", "balanced", "precise"]
-NEWBING_COOKIES = """
-put your new bing cookies here
-"""
-
-
-# 阿里云实时语音识别 配置难度较高 仅建议高手用户使用 参考 https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md
+# 阿里云实时语音识别 配置难度较高
+# 参考 https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md
ENABLE_AUDIO = False
ALIYUN_TOKEN="" # 例如 f37f30e0f9934c34a992f6f64f7eba4f
ALIYUN_APPKEY="" # 例如 RoPlZrM88DnAFkZK
@@ -200,18 +204,14 @@ ZHIPUAI_API_KEY = ""
ZHIPUAI_MODEL = "" # 此选项已废弃,不再需要填写
-# # 火山引擎YUNQUE大模型
-# YUNQUE_SECRET_KEY = ""
-# YUNQUE_ACCESS_KEY = ""
-# YUNQUE_MODEL = ""
-
-
# Claude API KEY
ANTHROPIC_API_KEY = ""
+
# 月之暗面 API KEY
MOONSHOT_API_KEY = ""
+
# Mathpix 拥有执行PDF的OCR功能,但是需要注册账号
MATHPIX_APPID = ""
MATHPIX_APPKEY = ""
@@ -270,7 +270,11 @@ PLUGIN_HOT_RELOAD = False
# 自定义按钮的最大数量限制
NUM_CUSTOM_BASIC_BTN = 4
+
+
"""
+--------------- 配置关联关系说明 ---------------
+
在线大模型配置关联关系示意图
│
├── "gpt-3.5-turbo" 等openai模型
@@ -294,7 +298,7 @@ NUM_CUSTOM_BASIC_BTN = 4
│ ├── XFYUN_API_SECRET
│ └── XFYUN_API_KEY
│
-├── "claude-1-100k" 等claude模型
+├── "claude-3-opus-20240229" 等claude模型
│ └── ANTHROPIC_API_KEY
│
├── "stack-claude"
@@ -315,9 +319,10 @@ NUM_CUSTOM_BASIC_BTN = 4
├── "Gemini"
│ └── GEMINI_API_KEY
│
-└── "newbing" Newbing接口不再稳定,不推荐使用
- ├── NEWBING_STYLE
- └── NEWBING_COOKIES
+└── "one-api-...(max_token=...)" 用一种更方便的方式接入one-api多模型管理界面
+ ├── AVAIL_LLM_MODELS
+ ├── API_KEY
+ └── API_URL_REDIRECT
本地大模型示意图
@@ -364,4 +369,4 @@ NUM_CUSTOM_BASIC_BTN = 4
└── MATHPIX_APPKEY
-"""
+"""
\ No newline at end of file
diff --git a/core_functional.py b/core_functional.py
index 4074cdd..5941135 100644
--- a/core_functional.py
+++ b/core_functional.py
@@ -34,16 +34,16 @@ def get_core_functions():
# [6] 文本预处理 (可选参数,默认 None,举例:写个函数移除所有的换行符)
"PreProcess": None,
},
-
-
+
+
"总结绘制脑图": {
# 前缀,会被加在你的输入之前。例如,用来描述你的要求,例如翻译、解释代码、润色等等
- "Prefix": r"",
+ "Prefix": '''"""\n\n''',
# 后缀,会被加在你的输入之后。例如,配合前缀可以把你的输入内容用引号圈起来
"Suffix":
# dedent() 函数用于去除多行字符串的缩进
- dedent("\n"+r'''
- ==============================
+ dedent("\n\n"+r'''
+ """
使用mermaid flowchart对以上文本进行总结,概括上述段落的内容以及内在逻辑关系,例如:
@@ -57,15 +57,15 @@ def get_core_functions():
C --> |"箭头名2"| F["节点名6"]
```
- 警告:
+ 注意:
(1)使用中文
(2)节点名字使用引号包裹,如["Laptop"]
(3)`|` 和 `"`之间不要存在空格
(4)根据情况选择flowchart LR(从左到右)或者flowchart TD(从上到下)
'''),
},
-
-
+
+
"查找语法错误": {
"Prefix": r"Help me ensure that the grammar and the spelling is correct. "
r"Do not try to polish the text, if no mistake is found, tell me that this paragraph is good. "
@@ -85,14 +85,14 @@ def get_core_functions():
"Suffix": r"",
"PreProcess": clear_line_break, # 预处理:清除换行符
},
-
-
+
+
"中译英": {
"Prefix": r"Please translate following sentence to English:" + "\n\n",
"Suffix": r"",
},
-
-
+
+
"学术英中互译": {
"Prefix": build_gpt_academic_masked_string_langbased(
text_show_chinese=
@@ -112,29 +112,29 @@ def get_core_functions():
) + "\n\n",
"Suffix": r"",
},
-
-
+
+
"英译中": {
"Prefix": r"翻译成地道的中文:" + "\n\n",
"Suffix": r"",
"Visible": False,
},
-
-
+
+
"找图片": {
"Prefix": r"我需要你找一张网络图片。使用Unsplash API(https://source.unsplash.com/960x640/?<英语关键词>)获取图片URL,"
r"然后请使用Markdown格式封装,并且不要有反斜线,不要用代码块。现在,请按以下描述给我发送图片:" + "\n\n",
"Suffix": r"",
"Visible": False,
},
-
-
+
+
"解释代码": {
"Prefix": r"请解释以下代码:" + "\n```\n",
"Suffix": "\n```\n",
},
-
-
+
+
"参考文献转Bib": {
"Prefix": r"Here are some bibliography items, please transform them into bibtex style."
r"Note that, reference styles maybe more than one kind, you should transform each item correctly."
diff --git a/crazy_functions/Latex全文润色.py b/crazy_functions/Latex全文润色.py
index 3bd0613..8f3074a 100644
--- a/crazy_functions/Latex全文润色.py
+++ b/crazy_functions/Latex全文润色.py
@@ -46,7 +46,7 @@ class PaperFileGroup():
manifest.append(path + '.polish.tex')
f.write(res)
return manifest
-
+
def zip_result(self):
import os, time
folder = os.path.dirname(self.file_paths[0])
@@ -59,7 +59,7 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
- # <-------- 读取Latex文件,删除其中的所有注释 ---------->
+ # <-------- 读取Latex文件,删除其中的所有注释 ---------->
pfg = PaperFileGroup()
for index, fp in enumerate(file_manifest):
@@ -73,31 +73,31 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
pfg.file_paths.append(fp)
pfg.file_contents.append(clean_tex_content)
- # <-------- 拆分过长的latex文件 ---------->
+ # <-------- 拆分过长的latex文件 ---------->
pfg.run_file_split(max_token_limit=1024)
n_split = len(pfg.sp_file_contents)
- # <-------- 多线程润色开始 ---------->
+ # <-------- 多线程润色开始 ---------->
if language == 'en':
if mode == 'polish':
- inputs_array = ["Below is a section from an academic paper, polish this section to meet the academic standard, " +
- "improve the grammar, clarity and overall readability, do not modify any latex command such as \section, \cite and equations:" +
+ inputs_array = ["Below is a section from an academic paper, polish this section to meet the academic standard, " +
+ "improve the grammar, clarity and overall readability, do not modify any latex command such as \section, \cite and equations:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
else:
- inputs_array = [r"Below is a section from an academic paper, proofread this section." +
- r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " +
- r"Answer me only with the revised text:" +
+ inputs_array = [r"Below is a section from an academic paper, proofread this section." +
+ r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " +
+ r"Answer me only with the revised text:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"Polish {f}" for f in pfg.sp_file_tag]
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
elif language == 'zh':
if mode == 'polish':
- inputs_array = [f"以下是一篇学术论文中的一段内容,请将此部分润色以满足学术标准,提高语法、清晰度和整体可读性,不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
+ inputs_array = [f"以下是一篇学术论文中的一段内容,请将此部分润色以满足学术标准,提高语法、清晰度和整体可读性,不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
else:
- inputs_array = [f"以下是一篇学术论文中的一段内容,请对这部分内容进行语法矫正。不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
- f"\n\n{frag}" for frag in pfg.sp_file_contents]
+ inputs_array = [f"以下是一篇学术论文中的一段内容,请对这部分内容进行语法矫正。不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
+ f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"润色 {f}" for f in pfg.sp_file_tag]
sys_prompt_array=["你是一位专业的中文学术论文作家。" for _ in range(n_split)]
@@ -113,7 +113,7 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
scroller_max_len = 80
)
- # <-------- 文本碎片重组为完整的tex文件,整理结果为压缩包 ---------->
+ # <-------- 文本碎片重组为完整的tex文件,整理结果为压缩包 ---------->
try:
pfg.sp_file_result = []
for i_say, gpt_say in zip(gpt_response_collection[0::2], gpt_response_collection[1::2]):
@@ -124,7 +124,7 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
except:
print(trimmed_format_exc())
- # <-------- 整理结果,退出 ---------->
+ # <-------- 整理结果,退出 ---------->
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
res = write_history_to_file(gpt_response_collection, file_basename=create_report_file_name)
promote_file_to_downloadzone(res, chatbot=chatbot)
diff --git a/crazy_functions/Latex全文翻译.py b/crazy_functions/Latex全文翻译.py
index d6c3b5e..a0802fd 100644
--- a/crazy_functions/Latex全文翻译.py
+++ b/crazy_functions/Latex全文翻译.py
@@ -39,7 +39,7 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
import time, os, re
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
- # <-------- 读取Latex文件,删除其中的所有注释 ---------->
+ # <-------- 读取Latex文件,删除其中的所有注释 ---------->
pfg = PaperFileGroup()
for index, fp in enumerate(file_manifest):
@@ -53,11 +53,11 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
pfg.file_paths.append(fp)
pfg.file_contents.append(clean_tex_content)
- # <-------- 拆分过长的latex文件 ---------->
+ # <-------- 拆分过长的latex文件 ---------->
pfg.run_file_split(max_token_limit=1024)
n_split = len(pfg.sp_file_contents)
- # <-------- 抽取摘要 ---------->
+ # <-------- 抽取摘要 ---------->
# if language == 'en':
# abs_extract_inputs = f"Please write an abstract for this paper"
@@ -70,14 +70,14 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
# sys_prompt="Your job is to collect information from materials。",
# )
- # <-------- 多线程润色开始 ---------->
+ # <-------- 多线程润色开始 ---------->
if language == 'en->zh':
- inputs_array = ["Below is a section from an English academic paper, translate it into Chinese, do not modify any latex command such as \section, \cite and equations:" +
+ inputs_array = ["Below is a section from an English academic paper, translate it into Chinese, do not modify any latex command such as \section, \cite and equations:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
elif language == 'zh->en':
- inputs_array = [f"Below is a section from a Chinese academic paper, translate it into English, do not modify any latex command such as \section, \cite and equations:" +
+ inputs_array = [f"Below is a section from a Chinese academic paper, translate it into English, do not modify any latex command such as \section, \cite and equations:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
@@ -93,7 +93,7 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
scroller_max_len = 80
)
- # <-------- 整理结果,退出 ---------->
+ # <-------- 整理结果,退出 ---------->
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
res = write_history_to_file(gpt_response_collection, create_report_file_name)
promote_file_to_downloadzone(res, chatbot=chatbot)
diff --git a/crazy_functions/Latex输出PDF.py b/crazy_functions/Latex输出PDF.py
index fc878f9..0471749 100644
--- a/crazy_functions/Latex输出PDF.py
+++ b/crazy_functions/Latex输出PDF.py
@@ -1,4 +1,4 @@
-from toolbox import update_ui, trimmed_format_exc, get_conf, get_log_folder, promote_file_to_downloadzone
+from toolbox import update_ui, trimmed_format_exc, get_conf, get_log_folder, promote_file_to_downloadzone, check_repeat_upload, map_file_to_sha256
from toolbox import CatchException, report_exception, update_ui_lastest_msg, zip_result, gen_time_str
from functools import partial
import glob, os, requests, time, json, tarfile
@@ -40,7 +40,7 @@ def switch_prompt(pfg, mode, more_requirement):
def desend_to_extracted_folder_if_exist(project_folder):
- """
+ """
Descend into the extracted folder if it exists, otherwise return the original folder.
Args:
@@ -56,7 +56,7 @@ def desend_to_extracted_folder_if_exist(project_folder):
def move_project(project_folder, arxiv_id=None):
- """
+ """
Create a new work folder and copy the project folder to it.
Args:
@@ -112,9 +112,9 @@ def arxiv_download(chatbot, history, txt, allow_cache=True):
if ('.' in txt) and ('/' not in txt) and is_float(txt[:10]): # is arxiv ID
txt = 'https://arxiv.org/abs/' + txt[:10]
- if not txt.startswith('https://arxiv.org'):
+ if not txt.startswith('https://arxiv.org'):
return txt, None # 是本地文件,跳过下载
-
+
# <-------------- inspect format ------------->
chatbot.append([f"检测到arxiv文档连接", '尝试下载 ...'])
yield from update_ui(chatbot=chatbot, history=history)
@@ -214,7 +214,7 @@ def pdf2tex_project(pdf_file_path):
return None
-# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 插件主程序1 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
+# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 插件主程序1 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
@CatchException
@@ -291,7 +291,7 @@ def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, histo
return success
-# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 插件主程序2 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
+# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 插件主程序2 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
@CatchException
def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
@@ -326,7 +326,7 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
txt, arxiv_id = yield from arxiv_download(chatbot, history, txt, allow_cache)
except tarfile.ReadError as e:
yield from update_ui_lastest_msg(
- "无法自动下载该论文的Latex源码,请前往arxiv打开此论文下载页面,点other Formats,然后download source手动下载latex源码包。接下来调用本地Latex翻译插件即可。",
+ "无法自动下载该论文的Latex源码,请前往arxiv打开此论文下载页面,点other Formats,然后download source手动下载latex源码包。接下来调用本地Latex翻译插件即可。",
chatbot=chatbot, history=history)
return
@@ -385,7 +385,7 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
return success
-# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- 插件主程序3 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
+# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- 插件主程序3 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
@CatchException
def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
@@ -438,47 +438,101 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
- # <-------------- convert pdf into tex ------------->
- project_folder = pdf2tex_project(file_manifest[0])
+ hash_tag = map_file_to_sha256(file_manifest[0])
- # Translate English Latex to Chinese Latex, and compile it
- file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
- if len(file_manifest) == 0:
- report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
- yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
- return
+ # <-------------- check repeated pdf ------------->
+ chatbot.append([f"检查PDF是否被重复上传", "正在检查..."])
+ yield from update_ui(chatbot=chatbot, history=history)
+ repeat, project_folder = check_repeat_upload(file_manifest[0], hash_tag)
- # <-------------- if is a zip/tar file ------------->
- project_folder = desend_to_extracted_folder_if_exist(project_folder)
+ except_flag = False
- # <-------------- move latex project away from temp folder ------------->
- project_folder = move_project(project_folder)
+ if repeat:
+ yield from update_ui_lastest_msg(f"发现重复上传,请查收结果(压缩包)...", chatbot=chatbot, history=history)
- # <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
- if not os.path.exists(project_folder + '/merge_translate_zh.tex'):
- yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
- chatbot, history, system_prompt, mode='translate_zh',
- switch_prompt=_switch_prompt_)
+ try:
+ trans_html_file = [f for f in glob.glob(f'{project_folder}/**/*.trans.html', recursive=True)][0]
+ promote_file_to_downloadzone(trans_html_file, rename_file=None, chatbot=chatbot)
- # <-------------- compile PDF ------------->
- success = yield from 编译Latex(chatbot, history, main_file_original='merge',
- main_file_modified='merge_translate_zh', mode='translate_zh',
- work_folder_original=project_folder, work_folder_modified=project_folder,
- work_folder=project_folder)
+ translate_pdf = [f for f in glob.glob(f'{project_folder}/**/merge_translate_zh.pdf', recursive=True)][0]
+ promote_file_to_downloadzone(translate_pdf, rename_file=None, chatbot=chatbot)
- # <-------------- zip PDF ------------->
- zip_res = zip_result(project_folder)
- if success:
- chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
- yield from update_ui(chatbot=chatbot, history=history);
- time.sleep(1) # 刷新界面
- promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
- else:
- chatbot.append((f"失败了",
- '虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体(见Github wiki) ...'))
- yield from update_ui(chatbot=chatbot, history=history);
- time.sleep(1) # 刷新界面
- promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
+ comparison_pdf = [f for f in glob.glob(f'{project_folder}/**/comparison.pdf', recursive=True)][0]
+ promote_file_to_downloadzone(comparison_pdf, rename_file=None, chatbot=chatbot)
- # <-------------- we are done ------------->
- return success
+ zip_res = zip_result(project_folder)
+ promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
+
+ return True
+
+ except:
+ report_exception(chatbot, history, b=f"发现重复上传,但是无法找到相关文件")
+ yield from update_ui(chatbot=chatbot, history=history)
+
+ chatbot.append([f"没有相关文件", '尝试重新翻译PDF...'])
+ yield from update_ui(chatbot=chatbot, history=history)
+
+ except_flag = True
+
+
+ elif not repeat or except_flag:
+ yield from update_ui_lastest_msg(f"未发现重复上传", chatbot=chatbot, history=history)
+
+ # <-------------- convert pdf into tex ------------->
+ chatbot.append([f"解析项目: {txt}", "正在将PDF转换为tex项目,请耐心等待..."])
+ yield from update_ui(chatbot=chatbot, history=history)
+ project_folder = pdf2tex_project(file_manifest[0])
+ if project_folder is None:
+ report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"PDF转换为tex项目失败")
+ yield from update_ui(chatbot=chatbot, history=history)
+ return False
+
+ # <-------------- translate latex file into Chinese ------------->
+ yield from update_ui_lastest_msg("正在tex项目将翻译为中文...", chatbot=chatbot, history=history)
+ file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
+ if len(file_manifest) == 0:
+ report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
+ yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
+ return
+
+ # <-------------- if is a zip/tar file ------------->
+ project_folder = desend_to_extracted_folder_if_exist(project_folder)
+
+ # <-------------- move latex project away from temp folder ------------->
+ project_folder = move_project(project_folder)
+
+ # <-------------- set a hash tag for repeat-checking ------------->
+ with open(pj(project_folder, hash_tag + '.tag'), 'w') as f:
+ f.write(hash_tag)
+ f.close()
+
+
+ # <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
+ if not os.path.exists(project_folder + '/merge_translate_zh.tex'):
+ yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
+ chatbot, history, system_prompt, mode='translate_zh',
+ switch_prompt=_switch_prompt_)
+
+ # <-------------- compile PDF ------------->
+ yield from update_ui_lastest_msg("正在将翻译好的项目tex项目编译为PDF...", chatbot=chatbot, history=history)
+ success = yield from 编译Latex(chatbot, history, main_file_original='merge',
+ main_file_modified='merge_translate_zh', mode='translate_zh',
+ work_folder_original=project_folder, work_folder_modified=project_folder,
+ work_folder=project_folder)
+
+ # <-------------- zip PDF ------------->
+ zip_res = zip_result(project_folder)
+ if success:
+ chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
+ yield from update_ui(chatbot=chatbot, history=history);
+ time.sleep(1) # 刷新界面
+ promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
+ else:
+ chatbot.append((f"失败了",
+ '虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体(见Github wiki) ...'))
+ yield from update_ui(chatbot=chatbot, history=history);
+ time.sleep(1) # 刷新界面
+ promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
+
+ # <-------------- we are done ------------->
+ return success
diff --git a/crazy_functions/agent_fns/pipe.py b/crazy_functions/agent_fns/pipe.py
index a292af8..128507c 100644
--- a/crazy_functions/agent_fns/pipe.py
+++ b/crazy_functions/agent_fns/pipe.py
@@ -72,7 +72,7 @@ class PluginMultiprocessManager:
if file_type.lower() in ['png', 'jpg']:
image_path = os.path.abspath(fp)
self.chatbot.append([
- '检测到新生图像:',
+ '检测到新生图像:',
f'本地文件预览:

'
])
yield from update_ui(chatbot=self.chatbot, history=self.history)
@@ -114,21 +114,21 @@ class PluginMultiprocessManager:
self.cnt = 1
self.parent_conn = self.launch_subprocess_with_pipe() # ⭐⭐⭐
repeated, cmd_to_autogen = self.send_command(txt)
- if txt == 'exit':
+ if txt == 'exit':
self.chatbot.append([f"结束", "结束信号已明确,终止AutoGen程序。"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
self.terminate()
return "terminate"
-
+
# patience = 10
-
+
while True:
time.sleep(0.5)
if not self.alive:
# the heartbeat watchdog might have it killed
self.terminate()
return "terminate"
- if self.parent_conn.poll():
+ if self.parent_conn.poll():
self.feed_heartbeat_watchdog()
if "[GPT-Academic] 等待中" in self.chatbot[-1][-1]:
self.chatbot.pop(-1) # remove the last line
@@ -152,8 +152,8 @@ class PluginMultiprocessManager:
yield from update_ui(chatbot=self.chatbot, history=self.history)
if msg.cmd == "interact":
yield from self.overwatch_workdir_file_change()
- self.chatbot.append([f"程序抵达用户反馈节点.", msg.content +
- "\n\n等待您的进一步指令." +
+ self.chatbot.append([f"程序抵达用户反馈节点.", msg.content +
+ "\n\n等待您的进一步指令." +
"\n\n(1) 一般情况下您不需要说什么, 清空输入区, 然后直接点击“提交”以继续. " +
"\n\n(2) 如果您需要补充些什么, 输入要反馈的内容, 直接点击“提交”以继续. " +
"\n\n(3) 如果您想终止程序, 输入exit, 直接点击“提交”以终止AutoGen并解锁. "
diff --git a/crazy_functions/agent_fns/watchdog.py b/crazy_functions/agent_fns/watchdog.py
index 2a2bdfa..7cd14d2 100644
--- a/crazy_functions/agent_fns/watchdog.py
+++ b/crazy_functions/agent_fns/watchdog.py
@@ -8,7 +8,7 @@ class WatchDog():
self.interval = interval
self.msg = msg
self.kill_dog = False
-
+
def watch(self):
while True:
if self.kill_dog: break
diff --git a/crazy_functions/chatglm微调工具.py b/crazy_functions/chatglm微调工具.py
index 1b28228..8405fc5 100644
--- a/crazy_functions/chatglm微调工具.py
+++ b/crazy_functions/chatglm微调工具.py
@@ -46,7 +46,7 @@ def 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成"))
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
args = plugin_kwargs.get("advanced_arg", None)
- if args is None:
+ if args is None:
chatbot.append(("没给定指令", "退出"))
yield from update_ui(chatbot=chatbot, history=history); return
else:
@@ -69,7 +69,7 @@ def 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
sys_prompt_array=[arguments.system_prompt for _ in (batch)],
max_workers=10 # OpenAI所允许的最大并行过载
)
-
+
with open(txt+'.generated.json', 'a+', encoding='utf8') as f:
for b, r in zip(batch, res[1::2]):
f.write(json.dumps({"content":b, "summary":r}, ensure_ascii=False)+'\n')
@@ -95,12 +95,12 @@ def 启动微调(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成"))
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
args = plugin_kwargs.get("advanced_arg", None)
- if args is None:
+ if args is None:
chatbot.append(("没给定指令", "退出"))
yield from update_ui(chatbot=chatbot, history=history); return
else:
arguments = string_to_options(arguments=args)
-
+
pre_seq_len = arguments.pre_seq_len # 128
diff --git a/crazy_functions/diagram_fns/file_tree.py b/crazy_functions/diagram_fns/file_tree.py
index fa7e2e4..d00ad13 100644
--- a/crazy_functions/diagram_fns/file_tree.py
+++ b/crazy_functions/diagram_fns/file_tree.py
@@ -10,7 +10,7 @@ class FileNode:
self.parenting_ship = []
self.comment = ""
self.comment_maxlen_show = 50
-
+
@staticmethod
def add_linebreaks_at_spaces(string, interval=10):
return '\n'.join(string[i:i+interval] for i in range(0, len(string), interval))
diff --git a/crazy_functions/game_fns/game_ascii_art.py b/crazy_functions/game_fns/game_ascii_art.py
index e0b7008..39d88e1 100644
--- a/crazy_functions/game_fns/game_ascii_art.py
+++ b/crazy_functions/game_fns/game_ascii_art.py
@@ -8,7 +8,7 @@ import random
class MiniGame_ASCII_Art(GptAcademicGameBaseState):
def step(self, prompt, chatbot, history):
- if self.step_cnt == 0:
+ if self.step_cnt == 0:
chatbot.append(["我画你猜(动物)", "请稍等..."])
else:
if prompt.strip() == 'exit':
diff --git a/crazy_functions/game_fns/game_interactive_story.py b/crazy_functions/game_fns/game_interactive_story.py
index 5c25f4a..6c528c3 100644
--- a/crazy_functions/game_fns/game_interactive_story.py
+++ b/crazy_functions/game_fns/game_interactive_story.py
@@ -88,8 +88,8 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
self.story = []
chatbot.append(["互动写故事", f"这次的故事开头是:{self.headstart}"])
self.sys_prompt_ = '你是一个想象力丰富的杰出作家。正在与你的朋友互动,一起写故事,因此你每次写的故事段落应少于300字(结局除外)。'
-
-
+
+
def generate_story_image(self, story_paragraph):
try:
from crazy_functions.图片生成 import gen_image
@@ -98,13 +98,13 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
return f'

'
except:
return ''
-
+
def step(self, prompt, chatbot, history):
-
+
"""
首先,处理游戏初始化等特殊情况
"""
- if self.step_cnt == 0:
+ if self.step_cnt == 0:
self.begin_game_step_0(prompt, chatbot, history)
self.lock_plugin(chatbot)
self.cur_task = 'head_start'
@@ -132,7 +132,7 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
inputs_ = prompts_hs.format(headstart=self.headstart)
history_ = []
story_paragraph = yield from request_gpt_model_in_new_thread_with_ui_alive(
- inputs_, '故事开头', self.llm_kwargs,
+ inputs_, '故事开头', self.llm_kwargs,
chatbot, history_, self.sys_prompt_
)
self.story.append(story_paragraph)
@@ -147,7 +147,7 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
inputs_ = prompts_interact.format(previously_on_story=previously_on_story)
history_ = []
self.next_choices = yield from request_gpt_model_in_new_thread_with_ui_alive(
- inputs_, '请在以下几种故事走向中,选择一种(当然,您也可以选择给出其他故事走向):', self.llm_kwargs,
+ inputs_, '请在以下几种故事走向中,选择一种(当然,您也可以选择给出其他故事走向):', self.llm_kwargs,
chatbot,
history_,
self.sys_prompt_
@@ -166,7 +166,7 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
inputs_ = prompts_resume.format(previously_on_story=previously_on_story, choice=self.next_choices, user_choice=prompt)
history_ = []
story_paragraph = yield from request_gpt_model_in_new_thread_with_ui_alive(
- inputs_, f'下一段故事(您的选择是:{prompt})。', self.llm_kwargs,
+ inputs_, f'下一段故事(您的选择是:{prompt})。', self.llm_kwargs,
chatbot, history_, self.sys_prompt_
)
self.story.append(story_paragraph)
@@ -181,10 +181,10 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
inputs_ = prompts_interact.format(previously_on_story=previously_on_story)
history_ = []
self.next_choices = yield from request_gpt_model_in_new_thread_with_ui_alive(
- inputs_,
- '请在以下几种故事走向中,选择一种。当然,您也可以给出您心中的其他故事走向。另外,如果您希望剧情立即收尾,请输入剧情走向,并以“剧情收尾”四个字提示程序。', self.llm_kwargs,
- chatbot,
- history_,
+ inputs_,
+ '请在以下几种故事走向中,选择一种。当然,您也可以给出您心中的其他故事走向。另外,如果您希望剧情立即收尾,请输入剧情走向,并以“剧情收尾”四个字提示程序。', self.llm_kwargs,
+ chatbot,
+ history_,
self.sys_prompt_
)
self.cur_task = 'user_choice'
@@ -200,7 +200,7 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
inputs_ = prompts_terminate.format(previously_on_story=previously_on_story, user_choice=prompt)
history_ = []
story_paragraph = yield from request_gpt_model_in_new_thread_with_ui_alive(
- inputs_, f'故事收尾(您的选择是:{prompt})。', self.llm_kwargs,
+ inputs_, f'故事收尾(您的选择是:{prompt})。', self.llm_kwargs,
chatbot, history_, self.sys_prompt_
)
# # 配图
diff --git a/crazy_functions/game_fns/game_utils.py b/crazy_functions/game_fns/game_utils.py
index 09b6f7a..c8f20eb 100644
--- a/crazy_functions/game_fns/game_utils.py
+++ b/crazy_functions/game_fns/game_utils.py
@@ -5,7 +5,7 @@ def get_code_block(reply):
import re
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
matches = re.findall(pattern, reply) # find all code blocks in text
- if len(matches) == 1:
+ if len(matches) == 1:
return "```" + matches[0] + "```" # code block
raise RuntimeError("GPT is not generating proper code.")
@@ -13,10 +13,10 @@ def is_same_thing(a, b, llm_kwargs):
from pydantic import BaseModel, Field
class IsSameThing(BaseModel):
is_same_thing: bool = Field(description="determine whether two objects are same thing.", default=False)
-
- def run_gpt_fn(inputs, sys_prompt, history=[]):
+
+ def run_gpt_fn(inputs, sys_prompt, history=[]):
return predict_no_ui_long_connection(
- inputs=inputs, llm_kwargs=llm_kwargs,
+ inputs=inputs, llm_kwargs=llm_kwargs,
history=history, sys_prompt=sys_prompt, observe_window=[]
)
@@ -24,7 +24,7 @@ def is_same_thing(a, b, llm_kwargs):
inputs_01 = "Identity whether the user input and the target is the same thing: \n target object: {a} \n user input object: {b} \n\n\n".format(a=a, b=b)
inputs_01 += "\n\n\n Note that the user may describe the target object with a different language, e.g. cat and 猫 are the same thing."
analyze_res_cot_01 = run_gpt_fn(inputs_01, "", [])
-
+
inputs_02 = inputs_01 + gpt_json_io.format_instructions
analyze_res = run_gpt_fn(inputs_02, "", [inputs_01, analyze_res_cot_01])
diff --git a/crazy_functions/gen_fns/gen_fns_shared.py b/crazy_functions/gen_fns/gen_fns_shared.py
index 8e73794..f451c2c 100644
--- a/crazy_functions/gen_fns/gen_fns_shared.py
+++ b/crazy_functions/gen_fns/gen_fns_shared.py
@@ -41,11 +41,11 @@ def is_function_successfully_generated(fn_path, class_name, return_dict):
# Now you can create an instance of the class
instance = some_class()
return_dict['success'] = True
- return
+ return
except:
return_dict['traceback'] = trimmed_format_exc()
return
-
+
def subprocess_worker(code, file_path, return_dict):
return_dict['result'] = None
return_dict['success'] = False
diff --git a/crazy_functions/ipc_fns/mp.py b/crazy_functions/ipc_fns/mp.py
index 575d47c..7c5e995 100644
--- a/crazy_functions/ipc_fns/mp.py
+++ b/crazy_functions/ipc_fns/mp.py
@@ -1,4 +1,4 @@
-import platform
+import platform
import pickle
import multiprocessing
diff --git a/crazy_functions/json_fns/pydantic_io.py b/crazy_functions/json_fns/pydantic_io.py
index 4e300d6..66316d4 100644
--- a/crazy_functions/json_fns/pydantic_io.py
+++ b/crazy_functions/json_fns/pydantic_io.py
@@ -89,7 +89,7 @@ class GptJsonIO():
error + "\n\n" + \
"Now, fix this json string. \n\n"
return prompt
-
+
def generate_output_auto_repair(self, response, gpt_gen_fn):
"""
response: string containing canidate json
diff --git a/crazy_functions/latex_fns/latex_actions.py b/crazy_functions/latex_fns/latex_actions.py
index 8772f5e..ac8a6b4 100644
--- a/crazy_functions/latex_fns/latex_actions.py
+++ b/crazy_functions/latex_fns/latex_actions.py
@@ -90,16 +90,16 @@ class LatexPaperSplit():
"版权归原文作者所有。翻译内容可靠性无保障,请仔细鉴别并以原文为准。" + \
"项目Github地址 \\url{https://github.com/binary-husky/gpt_academic/}。"
# 请您不要删除或修改这行警告,除非您是论文的原作者(如果您是论文原作者,欢迎加REAME中的QQ联系开发者)
- self.msg_declare = "为了防止大语言模型的意外谬误产生扩散影响,禁止移除或修改此警告。}}\\\\"
+ self.msg_declare = "为了防止大语言模型的意外谬误产生扩散影响,禁止移除或修改此警告。}}\\\\"
self.title = "unknown"
self.abstract = "unknown"
def read_title_and_abstract(self, txt):
try:
title, abstract = find_title_and_abs(txt)
- if title is not None:
+ if title is not None:
self.title = title.replace('\n', ' ').replace('\\\\', ' ').replace(' ', '').replace(' ', '')
- if abstract is not None:
+ if abstract is not None:
self.abstract = abstract.replace('\n', ' ').replace('\\\\', ' ').replace(' ', '').replace(' ', '')
except:
pass
@@ -111,7 +111,7 @@ class LatexPaperSplit():
result_string = ""
node_cnt = 0
line_cnt = 0
-
+
for node in self.nodes:
if node.preserve:
line_cnt += node.string.count('\n')
@@ -144,7 +144,7 @@ class LatexPaperSplit():
return result_string
- def split(self, txt, project_folder, opts):
+ def split(self, txt, project_folder, opts):
"""
break down latex file to a linked list,
each node use a preserve flag to indicate whether it should
@@ -155,7 +155,7 @@ class LatexPaperSplit():
manager = multiprocessing.Manager()
return_dict = manager.dict()
p = multiprocessing.Process(
- target=split_subprocess,
+ target=split_subprocess,
args=(txt, project_folder, return_dict, opts))
p.start()
p.join()
@@ -217,13 +217,13 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
from ..crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from .latex_actions import LatexPaperFileGroup, LatexPaperSplit
- # <-------- 寻找主tex文件 ---------->
+ # <-------- 寻找主tex文件 ---------->
maintex = find_main_tex_file(file_manifest, mode)
chatbot.append((f"定位主Latex文件", f'[Local Message] 分析结果:该项目的Latex主文件是{maintex}, 如果分析错误, 请立即终止程序, 删除或修改歧义文件, 然后重试。主程序即将开始, 请稍候。'))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
time.sleep(3)
- # <-------- 读取Latex文件, 将多文件tex工程融合为一个巨型tex ---------->
+ # <-------- 读取Latex文件, 将多文件tex工程融合为一个巨型tex ---------->
main_tex_basename = os.path.basename(maintex)
assert main_tex_basename.endswith('.tex')
main_tex_basename_bare = main_tex_basename[:-4]
@@ -240,13 +240,13 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
with open(project_folder + '/merge.tex', 'w', encoding='utf-8', errors='replace') as f:
f.write(merged_content)
- # <-------- 精细切分latex文件 ---------->
+ # <-------- 精细切分latex文件 ---------->
chatbot.append((f"Latex文件融合完成", f'[Local Message] 正在精细切分latex文件,这需要一段时间计算,文档越长耗时越长,请耐心等待。'))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
lps = LatexPaperSplit()
lps.read_title_and_abstract(merged_content)
res = lps.split(merged_content, project_folder, opts) # 消耗时间的函数
- # <-------- 拆分过长的latex片段 ---------->
+ # <-------- 拆分过长的latex片段 ---------->
pfg = LatexPaperFileGroup()
for index, r in enumerate(res):
pfg.file_paths.append('segment-' + str(index))
@@ -255,17 +255,17 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
pfg.run_file_split(max_token_limit=1024)
n_split = len(pfg.sp_file_contents)
- # <-------- 根据需要切换prompt ---------->
+ # <-------- 根据需要切换prompt ---------->
inputs_array, sys_prompt_array = switch_prompt(pfg, mode)
inputs_show_user_array = [f"{mode} {f}" for f in pfg.sp_file_tag]
if os.path.exists(pj(project_folder,'temp.pkl')):
- # <-------- 【仅调试】如果存在调试缓存文件,则跳过GPT请求环节 ---------->
+ # <-------- 【仅调试】如果存在调试缓存文件,则跳过GPT请求环节 ---------->
pfg = objload(file=pj(project_folder,'temp.pkl'))
else:
- # <-------- gpt 多线程请求 ---------->
+ # <-------- gpt 多线程请求 ---------->
history_array = [[""] for _ in range(n_split)]
# LATEX_EXPERIMENTAL, = get_conf('LATEX_EXPERIMENTAL')
# if LATEX_EXPERIMENTAL:
@@ -284,32 +284,32 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
scroller_max_len = 40
)
- # <-------- 文本碎片重组为完整的tex片段 ---------->
+ # <-------- 文本碎片重组为完整的tex片段 ---------->
pfg.sp_file_result = []
for i_say, gpt_say, orig_content in zip(gpt_response_collection[0::2], gpt_response_collection[1::2], pfg.sp_file_contents):
pfg.sp_file_result.append(gpt_say)
pfg.merge_result()
- # <-------- 临时存储用于调试 ---------->
+ # <-------- 临时存储用于调试 ---------->
pfg.get_token_num = None
objdump(pfg, file=pj(project_folder,'temp.pkl'))
write_html(pfg.sp_file_contents, pfg.sp_file_result, chatbot=chatbot, project_folder=project_folder)
- # <-------- 写出文件 ---------->
+ # <-------- 写出文件 ---------->
msg = f"当前大语言模型: {llm_kwargs['llm_model']},当前语言模型温度设定: {llm_kwargs['temperature']}。"
final_tex = lps.merge_result(pfg.file_result, mode, msg)
objdump((lps, pfg.file_result, mode, msg), file=pj(project_folder,'merge_result.pkl'))
with open(project_folder + f'/merge_{mode}.tex', 'w', encoding='utf-8', errors='replace') as f:
if mode != 'translate_zh' or "binary" in final_tex: f.write(final_tex)
-
- # <-------- 整理结果, 退出 ---------->
+
+ # <-------- 整理结果, 退出 ---------->
chatbot.append((f"完成了吗?", 'GPT结果已输出, 即将编译PDF'))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
- # <-------- 返回 ---------->
+ # <-------- 返回 ---------->
return project_folder + f'/merge_{mode}.tex'
@@ -362,7 +362,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译转化后的PDF ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
-
+
if ok and os.path.exists(pj(work_folder_modified, f'{main_file_modified}.pdf')):
# 只有第二步成功,才能继续下面的步骤
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译BibTex ...', chatbot, history) # 刷新Gradio前端界面
@@ -393,9 +393,9 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
original_pdf_success = os.path.exists(pj(work_folder_original, f'{main_file_original}.pdf'))
modified_pdf_success = os.path.exists(pj(work_folder_modified, f'{main_file_modified}.pdf'))
diff_pdf_success = os.path.exists(pj(work_folder, f'merge_diff.pdf'))
- results_ += f"原始PDF编译是否成功: {original_pdf_success};"
- results_ += f"转化PDF编译是否成功: {modified_pdf_success};"
- results_ += f"对比PDF编译是否成功: {diff_pdf_success};"
+ results_ += f"原始PDF编译是否成功: {original_pdf_success};"
+ results_ += f"转化PDF编译是否成功: {modified_pdf_success};"
+ results_ += f"对比PDF编译是否成功: {diff_pdf_success};"
yield from update_ui_lastest_msg(f'第{n_fix}编译结束:
{results_}...', chatbot, history) # 刷新Gradio前端界面
if diff_pdf_success:
@@ -409,7 +409,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
shutil.copyfile(result_pdf, pj(work_folder, '..', 'translation', 'translate_zh.pdf'))
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
# 将两个PDF拼接
- if original_pdf_success:
+ if original_pdf_success:
try:
from .latex_toolbox import merge_pdfs
concat_pdf = pj(work_folder_modified, f'comparison.pdf')
@@ -425,7 +425,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
if n_fix>=max_try: break
n_fix += 1
can_retry, main_file_modified, buggy_lines = remove_buggy_lines(
- file_path=pj(work_folder_modified, f'{main_file_modified}.tex'),
+ file_path=pj(work_folder_modified, f'{main_file_modified}.tex'),
log_path=pj(work_folder_modified, f'{main_file_modified}.log'),
tex_name=f'{main_file_modified}.tex',
tex_name_pure=f'{main_file_modified}',
@@ -445,14 +445,14 @@ def write_html(sp_file_contents, sp_file_result, chatbot, project_folder):
import shutil
from crazy_functions.pdf_fns.report_gen_html import construct_html
from toolbox import gen_time_str
- ch = construct_html()
+ ch = construct_html()
orig = ""
trans = ""
final = []
- for c,r in zip(sp_file_contents, sp_file_result):
+ for c,r in zip(sp_file_contents, sp_file_result):
final.append(c)
final.append(r)
- for i, k in enumerate(final):
+ for i, k in enumerate(final):
if i%2==0:
orig = k
if i%2==1:
diff --git a/crazy_functions/live_audio/aliyunASR.py b/crazy_functions/live_audio/aliyunASR.py
index cba4c01..3a52328 100644
--- a/crazy_functions/live_audio/aliyunASR.py
+++ b/crazy_functions/live_audio/aliyunASR.py
@@ -85,8 +85,8 @@ def write_numpy_to_wave(filename, rate, data, add_header=False):
def is_speaker_speaking(vad, data, sample_rate):
# Function to detect if the speaker is speaking
- # The WebRTC VAD only accepts 16-bit mono PCM audio,
- # sampled at 8000, 16000, 32000 or 48000 Hz.
+ # The WebRTC VAD only accepts 16-bit mono PCM audio,
+ # sampled at 8000, 16000, 32000 or 48000 Hz.
# A frame must be either 10, 20, or 30 ms in duration:
frame_duration = 30
n_bit_each = int(sample_rate * frame_duration / 1000)*2 # x2 because audio is 16 bit (2 bytes)
@@ -94,7 +94,7 @@ def is_speaker_speaking(vad, data, sample_rate):
for t in range(len(data)):
if t!=0 and t % n_bit_each == 0:
res_list.append(vad.is_speech(data[t-n_bit_each:t], sample_rate))
-
+
info = ''.join(['^' if r else '.' for r in res_list])
info = info[:10]
if any(res_list):
@@ -186,10 +186,10 @@ class AliyunASR():
keep_alive_last_send_time = time.time()
while not self.stop:
# time.sleep(self.capture_interval)
- audio = rad.read(uuid.hex)
+ audio = rad.read(uuid.hex)
if audio is not None:
# convert to pcm file
- temp_file = f'{temp_folder}/{uuid.hex}.pcm' #
+ temp_file = f'{temp_folder}/{uuid.hex}.pcm' #
dsdata = change_sample_rate(audio, rad.rate, NEW_SAMPLERATE) # 48000 --> 16000
write_numpy_to_wave(temp_file, NEW_SAMPLERATE, dsdata)
# read pcm binary
diff --git a/crazy_functions/live_audio/audio_io.py b/crazy_functions/live_audio/audio_io.py
index 00fd3f2..9fd886c 100644
--- a/crazy_functions/live_audio/audio_io.py
+++ b/crazy_functions/live_audio/audio_io.py
@@ -3,12 +3,12 @@ from scipy import interpolate
def Singleton(cls):
_instance = {}
-
+
def _singleton(*args, **kargs):
if cls not in _instance:
_instance[cls] = cls(*args, **kargs)
return _instance[cls]
-
+
return _singleton
@@ -39,7 +39,7 @@ class RealtimeAudioDistribution():
else:
res = None
return res
-
+
def change_sample_rate(audio, old_sr, new_sr):
duration = audio.shape[0] / old_sr
diff --git a/crazy_functions/multi_stage/multi_stage_utils.py b/crazy_functions/multi_stage/multi_stage_utils.py
index 1395e79..952c484 100644
--- a/crazy_functions/multi_stage/multi_stage_utils.py
+++ b/crazy_functions/multi_stage/multi_stage_utils.py
@@ -40,7 +40,7 @@ class GptAcademicState():
class GptAcademicGameBaseState():
"""
- 1. first init: __init__ ->
+ 1. first init: __init__ ->
"""
def init_game(self, chatbot, lock_plugin):
self.plugin_name = None
@@ -53,7 +53,7 @@ class GptAcademicGameBaseState():
raise ValueError("callback_fn is None")
chatbot._cookies['lock_plugin'] = self.callback_fn
self.dump_state(chatbot)
-
+
def get_plugin_name(self):
if self.plugin_name is None:
raise ValueError("plugin_name is None")
@@ -71,7 +71,7 @@ class GptAcademicGameBaseState():
state = chatbot._cookies.get(f'plugin_state/{plugin_name}', None)
if state is not None:
state = pickle.loads(state)
- else:
+ else:
state = cls()
state.init_game(chatbot, lock_plugin)
state.plugin_name = plugin_name
@@ -79,7 +79,7 @@ class GptAcademicGameBaseState():
state.chatbot = chatbot
state.callback_fn = callback_fn
return state
-
+
def continue_game(self, prompt, chatbot, history):
# 游戏主体
yield from self.step(prompt, chatbot, history)
diff --git a/crazy_functions/pdf_fns/breakdown_txt.py b/crazy_functions/pdf_fns/breakdown_txt.py
index e7c7673..784d796 100644
--- a/crazy_functions/pdf_fns/breakdown_txt.py
+++ b/crazy_functions/pdf_fns/breakdown_txt.py
@@ -35,7 +35,7 @@ def cut(limit, get_token_fn, txt_tocut, must_break_at_empty_line, break_anyway=F
remain_txt_to_cut_storage = ""
# 为了加速计算,我们采样一个特殊的手段。当 remain_txt_to_cut > `_max` 时, 我们把 _max 后的文字转存至 remain_txt_to_cut_storage
remain_txt_to_cut, remain_txt_to_cut_storage = maintain_storage(remain_txt_to_cut, remain_txt_to_cut_storage)
-
+
while True:
if get_token_fn(remain_txt_to_cut) <= limit:
# 如果剩余文本的token数小于限制,那么就不用切了
diff --git a/crazy_functions/pdf_fns/parse_pdf.py b/crazy_functions/pdf_fns/parse_pdf.py
index fa27de5..a1b66d0 100644
--- a/crazy_functions/pdf_fns/parse_pdf.py
+++ b/crazy_functions/pdf_fns/parse_pdf.py
@@ -64,8 +64,8 @@ def produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chat
# 再做一个小修改:重新修改当前part的标题,默认用英文的
cur_value += value
translated_res_array.append(cur_value)
- res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + translated_res_array,
- file_basename = f"{gen_time_str()}-translated_only.md",
+ res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + translated_res_array,
+ file_basename = f"{gen_time_str()}-translated_only.md",
file_fullname = None,
auto_caption = False)
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(res_path)+'.md', chatbot=chatbot)
@@ -144,11 +144,11 @@ def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_fi
produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files)
# -=-=-=-=-=-=-=-= 写出HTML文件 -=-=-=-=-=-=-=-=
- ch = construct_html()
+ ch = construct_html()
orig = ""
trans = ""
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
- for i,k in enumerate(gpt_response_collection_html):
+ for i,k in enumerate(gpt_response_collection_html):
if i%2==0:
gpt_response_collection_html[i] = inputs_show_user_array[i//2]
else:
@@ -159,7 +159,7 @@ def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_fi
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""]
final.extend(gpt_response_collection_html)
- for i, k in enumerate(final):
+ for i, k in enumerate(final):
if i%2==0:
orig = k
if i%2==1:
diff --git a/crazy_functions/pdf_fns/parse_word.py b/crazy_functions/pdf_fns/parse_word.py
index 64d07dc..3664a9c 100644
--- a/crazy_functions/pdf_fns/parse_word.py
+++ b/crazy_functions/pdf_fns/parse_word.py
@@ -22,10 +22,10 @@ def extract_text_from_files(txt, chatbot, history):
file_manifest = []
excption = ""
- if txt == "":
+ if txt == "":
final_result.append(txt)
return False, final_result, page_one, file_manifest, excption #如输入区内容不是文件则直接返回输入区内容
-
+
#查找输入区内容中的文件
file_pdf,pdf_manifest,folder_pdf = get_files_from_everything(txt, '.pdf')
file_md,md_manifest,folder_md = get_files_from_everything(txt, '.md')
@@ -35,12 +35,12 @@ def extract_text_from_files(txt, chatbot, history):
if file_doc:
excption = "word"
return False, final_result, page_one, file_manifest, excption
-
+
file_num = len(pdf_manifest) + len(md_manifest) + len(word_manifest)
if file_num == 0:
final_result.append(txt)
return False, final_result, page_one, file_manifest, excption #如输入区内容不是文件则直接返回输入区内容
-
+
if file_pdf:
try: # 尝试导入依赖,如果缺少依赖,则给出安装建议
import fitz
@@ -61,7 +61,7 @@ def extract_text_from_files(txt, chatbot, history):
file_content = f.read()
file_content = file_content.encode('utf-8', 'ignore').decode()
headers = re.findall(r'^#\s(.*)$', file_content, re.MULTILINE) #接下来提取md中的一级/二级标题作为摘要
- if len(headers) > 0:
+ if len(headers) > 0:
page_one.append("\n".join(headers)) #合并所有的标题,以换行符分割
else:
page_one.append("")
@@ -81,5 +81,5 @@ def extract_text_from_files(txt, chatbot, history):
page_one.append(file_content[:200])
final_result.append(file_content)
file_manifest.append(os.path.relpath(fp, folder_word))
-
+
return True, final_result, page_one, file_manifest, excption
\ No newline at end of file
diff --git a/crazy_functions/vector_fns/vector_database.py b/crazy_functions/vector_fns/vector_database.py
index cffa22c..46fc72d 100644
--- a/crazy_functions/vector_fns/vector_database.py
+++ b/crazy_functions/vector_fns/vector_database.py
@@ -28,7 +28,7 @@ EMBEDDING_DEVICE = "cpu"
# 基于上下文的prompt模版,请务必保留"{question}"和"{context}"
PROMPT_TEMPLATE = """已知信息:
-{context}
+{context}
根据上述已知信息,简洁和专业的来回答用户的问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题” 或 “没有提供足够的相关信息”,不允许在答案中添加编造成分,答案请使用中文。 问题是:{question}"""
@@ -58,7 +58,7 @@ OPEN_CROSS_DOMAIN = False
def similarity_search_with_score_by_vector(
self, embedding: List[float], k: int = 4
) -> List[Tuple[Document, float]]:
-
+
def seperate_list(ls: List[int]) -> List[List[int]]:
lists = []
ls1 = [ls[0]]
@@ -200,7 +200,7 @@ class LocalDocQA:
return vs_path, loaded_files
else:
raise RuntimeError("文件加载失败,请检查文件格式是否正确")
-
+
def get_loaded_file(self, vs_path):
ds = self.vector_store.docstore
return set([ds._dict[k].metadata['source'].split(vs_path)[-1] for k in ds._dict])
@@ -290,10 +290,10 @@ class knowledge_archive_interface():
self.threadLock.acquire()
# import uuid
self.current_id = id
- self.qa_handle, self.kai_path = construct_vector_store(
- vs_id=self.current_id,
+ self.qa_handle, self.kai_path = construct_vector_store(
+ vs_id=self.current_id,
vs_path=vs_path,
- files=file_manifest,
+ files=file_manifest,
sentence_size=100,
history=[],
one_conent="",
@@ -304,7 +304,7 @@ class knowledge_archive_interface():
def get_current_archive_id(self):
return self.current_id
-
+
def get_loaded_file(self, vs_path):
return self.qa_handle.get_loaded_file(vs_path)
@@ -312,10 +312,10 @@ class knowledge_archive_interface():
self.threadLock.acquire()
if not self.current_id == id:
self.current_id = id
- self.qa_handle, self.kai_path = construct_vector_store(
- vs_id=self.current_id,
+ self.qa_handle, self.kai_path = construct_vector_store(
+ vs_id=self.current_id,
vs_path=vs_path,
- files=[],
+ files=[],
sentence_size=100,
history=[],
one_conent="",
@@ -329,7 +329,7 @@ class knowledge_archive_interface():
query = txt,
vs_path = self.kai_path,
score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
- vector_search_top_k=VECTOR_SEARCH_TOP_K,
+ vector_search_top_k=VECTOR_SEARCH_TOP_K,
chunk_conent=True,
chunk_size=CHUNK_SIZE,
text2vec = self.get_chinese_text2vec(),
diff --git a/crazy_functions/vt_fns/vt_call_plugin.py b/crazy_functions/vt_fns/vt_call_plugin.py
index f33644d..5824d06 100644
--- a/crazy_functions/vt_fns/vt_call_plugin.py
+++ b/crazy_functions/vt_fns/vt_call_plugin.py
@@ -35,9 +35,9 @@ def get_recent_file_prompt_support(chatbot):
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
path = most_recent_uploaded['path']
prompt = "\nAdditional Information:\n"
- prompt = "In case that this plugin requires a path or a file as argument,"
- prompt += f"it is important for you to know that the user has recently uploaded a file, located at: `{path}`"
- prompt += f"Only use it when necessary, otherwise, you can ignore this file."
+ prompt = "In case that this plugin requires a path or a file as argument,"
+ prompt += f"it is important for you to know that the user has recently uploaded a file, located at: `{path}`"
+ prompt += f"Only use it when necessary, otherwise, you can ignore this file."
return prompt
def get_inputs_show_user(inputs, plugin_arr_enum_prompt):
@@ -82,7 +82,7 @@ def execute_plugin(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
msg += "\n但您可以尝试再试一次\n"
yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2)
return
-
+
# ⭐ ⭐ ⭐ 确认插件参数
if not have_any_recent_upload_files(chatbot):
appendix_info = ""
@@ -99,7 +99,7 @@ def execute_plugin(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
inputs = f"A plugin named {plugin_sel.plugin_selection} is selected, " + \
"you should extract plugin_arg from the user requirement, the user requirement is: \n\n" + \
">> " + (txt + appendix_info).rstrip('\n').replace('\n','\n>> ') + '\n\n' + \
- gpt_json_io.format_instructions
+ gpt_json_io.format_instructions
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(
inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
plugin_sel = gpt_json_io.generate_output_auto_repair(run_gpt_fn(inputs, ""), run_gpt_fn)
diff --git a/crazy_functions/vt_fns/vt_modify_config.py b/crazy_functions/vt_fns/vt_modify_config.py
index 58a8531..11fa8b1 100644
--- a/crazy_functions/vt_fns/vt_modify_config.py
+++ b/crazy_functions/vt_fns/vt_modify_config.py
@@ -10,7 +10,7 @@ def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
ALLOW_RESET_CONFIG = get_conf('ALLOW_RESET_CONFIG')
if not ALLOW_RESET_CONFIG:
yield from update_ui_lastest_msg(
- lastmsg=f"当前配置不允许被修改!如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
+ lastmsg=f"当前配置不允许被修改!如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
chatbot=chatbot, history=history, delay=2
)
return
@@ -35,7 +35,7 @@ def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
inputs = "Analyze how to change configuration according to following user input, answer me with json: \n\n" + \
">> " + txt.rstrip('\n').replace('\n','\n>> ') + '\n\n' + \
gpt_json_io.format_instructions
-
+
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(
inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
user_intention = gpt_json_io.generate_output_auto_repair(run_gpt_fn(inputs, ""), run_gpt_fn)
@@ -45,11 +45,11 @@ def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
ok = (explicit_conf in txt)
if ok:
yield from update_ui_lastest_msg(
- lastmsg=f"正在执行任务: {txt}\n\n新配置{explicit_conf}={user_intention.new_option_value}",
+ lastmsg=f"正在执行任务: {txt}\n\n新配置{explicit_conf}={user_intention.new_option_value}",
chatbot=chatbot, history=history, delay=1
)
yield from update_ui_lastest_msg(
- lastmsg=f"正在执行任务: {txt}\n\n新配置{explicit_conf}={user_intention.new_option_value}\n\n正在修改配置中",
+ lastmsg=f"正在执行任务: {txt}\n\n新配置{explicit_conf}={user_intention.new_option_value}\n\n正在修改配置中",
chatbot=chatbot, history=history, delay=2
)
@@ -69,7 +69,7 @@ def modify_configuration_reboot(txt, llm_kwargs, plugin_kwargs, chatbot, history
ALLOW_RESET_CONFIG = get_conf('ALLOW_RESET_CONFIG')
if not ALLOW_RESET_CONFIG:
yield from update_ui_lastest_msg(
- lastmsg=f"当前配置不允许被修改!如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
+ lastmsg=f"当前配置不允许被修改!如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
chatbot=chatbot, history=history, delay=2
)
return
diff --git a/crazy_functions/vt_fns/vt_state.py b/crazy_functions/vt_fns/vt_state.py
index 1818728..9d5ff4c 100644
--- a/crazy_functions/vt_fns/vt_state.py
+++ b/crazy_functions/vt_fns/vt_state.py
@@ -6,7 +6,7 @@ class VoidTerminalState():
def reset_state(self):
self.has_provided_explaination = False
-
+
def lock_plugin(self, chatbot):
chatbot._cookies['lock_plugin'] = 'crazy_functions.虚空终端->虚空终端'
chatbot._cookies['plugin_state'] = pickle.dumps(self)
diff --git a/crazy_functions/下载arxiv论文翻译摘要.py b/crazy_functions/下载arxiv论文翻译摘要.py
index c368b7d..4360df7 100644
--- a/crazy_functions/下载arxiv论文翻译摘要.py
+++ b/crazy_functions/下载arxiv论文翻译摘要.py
@@ -144,8 +144,8 @@ def 下载arxiv论文并翻译摘要(txt, llm_kwargs, plugin_kwargs, chatbot, hi
try:
import bs4
except:
- report_exception(chatbot, history,
- a = f"解析项目: {txt}",
+ report_exception(chatbot, history,
+ a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade beautifulsoup4```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
@@ -157,12 +157,12 @@ def 下载arxiv论文并翻译摘要(txt, llm_kwargs, plugin_kwargs, chatbot, hi
try:
pdf_path, info = download_arxiv_(txt)
except:
- report_exception(chatbot, history,
- a = f"解析项目: {txt}",
+ report_exception(chatbot, history,
+ a = f"解析项目: {txt}",
b = f"下载pdf文件未成功")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
-
+
# 翻译摘要等
i_say = f"请你阅读以下学术论文相关的材料,提取摘要,翻译为中文。材料如下:{str(info)}"
i_say_show_user = f'请你阅读以下学术论文相关的材料,提取摘要,翻译为中文。论文:{pdf_path}'
diff --git a/crazy_functions/互动小游戏.py b/crazy_functions/互动小游戏.py
index 131e9c9..cf1af22 100644
--- a/crazy_functions/互动小游戏.py
+++ b/crazy_functions/互动小游戏.py
@@ -12,9 +12,9 @@ def 随机小游戏(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_
# 选择游戏
cls = MiniGame_ResumeStory
# 如果之前已经初始化了游戏实例,则继续该实例;否则重新初始化
- state = cls.sync_state(chatbot,
- llm_kwargs,
- cls,
+ state = cls.sync_state(chatbot,
+ llm_kwargs,
+ cls,
plugin_name='MiniGame_ResumeStory',
callback_fn='crazy_functions.互动小游戏->随机小游戏',
lock_plugin=True
@@ -30,9 +30,9 @@ def 随机小游戏1(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system
# 选择游戏
cls = MiniGame_ASCII_Art
# 如果之前已经初始化了游戏实例,则继续该实例;否则重新初始化
- state = cls.sync_state(chatbot,
- llm_kwargs,
- cls,
+ state = cls.sync_state(chatbot,
+ llm_kwargs,
+ cls,
plugin_name='MiniGame_ASCII_Art',
callback_fn='crazy_functions.互动小游戏->随机小游戏1',
lock_plugin=True
diff --git a/crazy_functions/交互功能函数模板.py b/crazy_functions/交互功能函数模板.py
index 811267a..4a8ae6f 100644
--- a/crazy_functions/交互功能函数模板.py
+++ b/crazy_functions/交互功能函数模板.py
@@ -38,7 +38,7 @@ def 交互功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
inputs=inputs_show_user=f"Extract all image urls in this html page, pick the first 5 images and show them with markdown format: \n\n {page_return}"
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=inputs, inputs_show_user=inputs_show_user,
- llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
+ llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
sys_prompt="When you want to show an image, use markdown format. e.g. . If there are no image url provided, answer 'no image url provided'"
)
chatbot[-1] = [chatbot[-1][0], gpt_say]
diff --git a/crazy_functions/函数动态生成.py b/crazy_functions/函数动态生成.py
index d20d0cf..2ca2355 100644
--- a/crazy_functions/函数动态生成.py
+++ b/crazy_functions/函数动态生成.py
@@ -6,10 +6,10 @@
- 将图像转为灰度图像
- 将csv文件转excel表格
-Testing:
- - Crop the image, keeping the bottom half.
- - Swap the blue channel and red channel of the image.
- - Convert the image to grayscale.
+Testing:
+ - Crop the image, keeping the bottom half.
+ - Swap the blue channel and red channel of the image.
+ - Convert the image to grayscale.
- Convert the CSV file to an Excel spreadsheet.
"""
@@ -29,12 +29,12 @@ import multiprocessing
templete = """
```python
-import ... # Put dependencies here, e.g. import numpy as np.
+import ... # Put dependencies here, e.g. import numpy as np.
class TerminalFunction(object): # Do not change the name of the class, The name of the class must be `TerminalFunction`
def run(self, path): # The name of the function must be `run`, it takes only a positional argument.
- # rewrite the function you have just written here
+ # rewrite the function you have just written here
...
return generated_file_path
```
@@ -48,7 +48,7 @@ def get_code_block(reply):
import re
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
matches = re.findall(pattern, reply) # find all code blocks in text
- if len(matches) == 1:
+ if len(matches) == 1:
return matches[0].strip('python') # code block
for match in matches:
if 'class TerminalFunction' in match:
@@ -68,8 +68,8 @@ def gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history):
# 第一步
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
- inputs=i_say, inputs_show_user=i_say,
- llm_kwargs=llm_kwargs, chatbot=chatbot, history=demo,
+ inputs=i_say, inputs_show_user=i_say,
+ llm_kwargs=llm_kwargs, chatbot=chatbot, history=demo,
sys_prompt= r"You are a world-class programmer."
)
history.extend([i_say, gpt_say])
@@ -82,33 +82,33 @@ def gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history):
]
i_say = "".join(prompt_compose); inputs_show_user = "If previous stage is successful, rewrite the function you have just written to satisfy executable templete. "
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
- inputs=i_say, inputs_show_user=inputs_show_user,
- llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
+ inputs=i_say, inputs_show_user=inputs_show_user,
+ llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
sys_prompt= r"You are a programmer. You need to replace `...` with valid packages, do not give `...` in your answer!"
)
code_to_return = gpt_say
history.extend([i_say, gpt_say])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
-
+
# # 第三步
# i_say = "Please list to packages to install to run the code above. Then show me how to use `try_install_deps` function to install them."
# i_say += 'For instance. `try_install_deps(["opencv-python", "scipy", "numpy"])`'
# installation_advance = yield from request_gpt_model_in_new_thread_with_ui_alive(
- # inputs=i_say, inputs_show_user=inputs_show_user,
- # llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
+ # inputs=i_say, inputs_show_user=inputs_show_user,
+ # llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
# sys_prompt= r"You are a programmer."
# )
- # # # 第三步
+ # # # 第三步
# i_say = "Show me how to use `pip` to install packages to run the code above. "
# i_say += 'For instance. `pip install -r opencv-python scipy numpy`'
# installation_advance = yield from request_gpt_model_in_new_thread_with_ui_alive(
- # inputs=i_say, inputs_show_user=i_say,
- # llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
+ # inputs=i_say, inputs_show_user=i_say,
+ # llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
# sys_prompt= r"You are a programmer."
# )
installation_advance = ""
-
+
return code_to_return, installation_advance, txt, file_type, llm_kwargs, chatbot, history
@@ -117,7 +117,7 @@ def gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history):
def for_immediate_show_off_when_possible(file_type, fp, chatbot):
if file_type in ['png', 'jpg']:
image_path = os.path.abspath(fp)
- chatbot.append(['这是一张图片, 展示如下:',
+ chatbot.append(['这是一张图片, 展示如下:',
f'本地文件地址:
`{image_path}`
'+
f'本地文件预览:

'
])
@@ -177,7 +177,7 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
chatbot.append(["文件检索", "没有发现任何近期上传的文件。"])
yield from update_ui_lastest_msg("没有发现任何近期上传的文件。", chatbot, history, 1)
return # 2. 如果没有文件
-
+
# 读取文件
file_type = file_list[0].split('.')[-1]
@@ -185,7 +185,7 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
if is_the_upload_folder(txt):
yield from update_ui_lastest_msg(f"请在输入框内填写需求, 然后再次点击该插件! 至于您的文件,不用担心, 文件路径 {txt} 已经被记忆. ", chatbot, history, 1)
return
-
+
# 开始干正事
MAX_TRY = 3
for j in range(MAX_TRY): # 最多重试5次
@@ -238,7 +238,7 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
# chatbot.append(["如果是缺乏依赖,请参考以下建议", installation_advance])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
-
+
# 顺利完成,收尾
res = str(res)
if os.path.exists(res):
@@ -248,5 +248,5 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
else:
chatbot.append(["执行成功了,结果是一个字符串", "结果:" + res])
- yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
+ yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
diff --git a/crazy_functions/命令行助手.py b/crazy_functions/命令行助手.py
index 2869524..43c6d8f 100644
--- a/crazy_functions/命令行助手.py
+++ b/crazy_functions/命令行助手.py
@@ -21,8 +21,8 @@ def 命令行助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
i_say = "请写bash命令实现以下功能:" + txt
# 开始
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
- inputs=i_say, inputs_show_user=txt,
- llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
+ inputs=i_say, inputs_show_user=txt,
+ llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
sys_prompt="你是一个Linux大师级用户。注意,当我要求你写bash命令时,尽可能地仅用一行命令解决我的要求。"
)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
diff --git a/crazy_functions/图片生成.py b/crazy_functions/图片生成.py
index 62f3662..24d3563 100644
--- a/crazy_functions/图片生成.py
+++ b/crazy_functions/图片生成.py
@@ -7,7 +7,7 @@ def gen_image(llm_kwargs, prompt, resolution="1024x1024", model="dall-e-2", qual
from request_llms.bridge_all import model_info
proxies = get_conf('proxies')
- # Set up OpenAI API key and model
+ # Set up OpenAI API key and model
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
chat_endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
# 'https://api.openai.com/v1/chat/completions'
@@ -113,7 +113,7 @@ def 图片生成_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, sys
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
resolution = plugin_kwargs.get("advanced_arg", '1024x1024')
image_url, image_path = gen_image(llm_kwargs, prompt, resolution)
- chatbot.append([prompt,
+ chatbot.append([prompt,
f'图像中转网址:
`{image_url}`
'+
f'中转网址预览:

'
f'本地文件地址:
`{image_path}`
'+
@@ -144,7 +144,7 @@ def 图片生成_DALLE3(prompt, llm_kwargs, plugin_kwargs, chatbot, history, sys
elif part in ['vivid', 'natural']:
style = part
image_url, image_path = gen_image(llm_kwargs, prompt, resolution, model="dall-e-3", quality=quality, style=style)
- chatbot.append([prompt,
+ chatbot.append([prompt,
f'图像中转网址:
`{image_url}`
'+
f'中转网址预览:

'
f'本地文件地址:
`{image_path}`
'+
@@ -164,7 +164,7 @@ class ImageEditState(GptAcademicState):
confirm = (len(file_manifest) >= 1 and file_manifest[0].endswith('.png') and os.path.exists(file_manifest[0]))
file = None if not confirm else file_manifest[0]
return confirm, file
-
+
def lock_plugin(self, chatbot):
chatbot._cookies['lock_plugin'] = 'crazy_functions.图片生成->图片修改_DALLE2'
self.dump_state(chatbot)
diff --git a/crazy_functions/多智能体.py b/crazy_functions/多智能体.py
index 4b16b88..00e4539 100644
--- a/crazy_functions/多智能体.py
+++ b/crazy_functions/多智能体.py
@@ -57,11 +57,11 @@ def 多智能体终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
if get_conf("AUTOGEN_USE_DOCKER"):
import docker
except:
- chatbot.append([ f"处理任务: {txt}",
+ chatbot.append([ f"处理任务: {txt}",
f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pyautogen docker```。"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
-
+
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import autogen
@@ -72,7 +72,7 @@ def 多智能体终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
chatbot.append([f"处理任务: {txt}", f"缺少docker运行环境!"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
-
+
# 解锁插件
chatbot.get_cookies()['lock_plugin'] = None
persistent_class_multi_user_manager = GradioMultiuserManagerForPersistentClasses()
diff --git a/crazy_functions/对话历史存档.py b/crazy_functions/对话历史存档.py
index 6ffc072..0132bc0 100644
--- a/crazy_functions/对话历史存档.py
+++ b/crazy_functions/对话历史存档.py
@@ -66,7 +66,7 @@ def read_file_to_chat(chatbot, history, file_name):
i_say, gpt_say = h.split('
')
chatbot.append([i_say, gpt_say])
chatbot.append([f"存档文件详情?", f"[Local Message] 载入对话{len(html)}条,上下文{len(history)}条。"])
- return chatbot, history
+ return chatbot, history
@CatchException
def 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
@@ -80,7 +80,7 @@ def 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
user_request 当前用户的请求信息(IP地址等)
"""
- chatbot.append(("保存当前对话",
+ chatbot.append(("保存当前对话",
f"[Local Message] {write_chat_to_file(chatbot, history)},您可以调用下拉菜单中的“载入对话历史存档”还原当下的对话。"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
@@ -108,9 +108,9 @@ def 载入对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
if txt == "": txt = '空空如也的输入栏'
import glob
local_history = "
".join([
- "`"+hide_cwd(f)+f" ({gen_file_preview(f)})"+"`"
+ "`"+hide_cwd(f)+f" ({gen_file_preview(f)})"+"`"
for f in glob.glob(
- f'{get_log_folder(get_user(chatbot), plugin_name="chat_history")}/**/{f_prefix}*.html',
+ f'{get_log_folder(get_user(chatbot), plugin_name="chat_history")}/**/{f_prefix}*.html',
recursive=True
)])
chatbot.append([f"正在查找对话历史文件(html格式): {txt}", f"找不到任何html文件: {txt}。但本地存储了以下历史文件,您可以将任意一个文件路径粘贴到输入区,然后重试:
{local_history}"])
@@ -139,7 +139,7 @@ def 删除所有本地对话历史记录(txt, llm_kwargs, plugin_kwargs, chatbot
import glob, os
local_history = "
".join([
- "`"+hide_cwd(f)+"`"
+ "`"+hide_cwd(f)+"`"
for f in glob.glob(
f'{get_log_folder(get_user(chatbot), plugin_name="chat_history")}/**/{f_prefix}*.html', recursive=True
)])
diff --git a/crazy_functions/总结word文档.py b/crazy_functions/总结word文档.py
index 8793ea4..c27c952 100644
--- a/crazy_functions/总结word文档.py
+++ b/crazy_functions/总结word文档.py
@@ -40,10 +40,10 @@ def 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot
i_say = f'请对下面的文章片段用中文做概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{paper_frag}```'
i_say_show_user = f'请对下面的文章片段做概述: {os.path.abspath(fp)}的第{i+1}/{len(paper_fragments)}个片段。'
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
- inputs=i_say,
- inputs_show_user=i_say_show_user,
+ inputs=i_say,
+ inputs_show_user=i_say_show_user,
llm_kwargs=llm_kwargs,
- chatbot=chatbot,
+ chatbot=chatbot,
history=[],
sys_prompt="总结文章。"
)
@@ -56,10 +56,10 @@ def 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot
if len(paper_fragments) > 1:
i_say = f"根据以上的对话,总结文章{os.path.abspath(fp)}的主要内容。"
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
- inputs=i_say,
- inputs_show_user=i_say,
+ inputs=i_say,
+ inputs_show_user=i_say,
llm_kwargs=llm_kwargs,
- chatbot=chatbot,
+ chatbot=chatbot,
history=this_paper_history,
sys_prompt="总结文章。"
)
diff --git a/crazy_functions/批量Markdown翻译.py b/crazy_functions/批量Markdown翻译.py
index 1d876d0..7b87589 100644
--- a/crazy_functions/批量Markdown翻译.py
+++ b/crazy_functions/批量Markdown翻译.py
@@ -53,7 +53,7 @@ class PaperFileGroup():
def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
- # <-------- 读取Markdown文件,删除其中的所有注释 ---------->
+ # <-------- 读取Markdown文件,删除其中的所有注释 ---------->
pfg = PaperFileGroup()
for index, fp in enumerate(file_manifest):
@@ -63,23 +63,23 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
pfg.file_paths.append(fp)
pfg.file_contents.append(file_content)
- # <-------- 拆分过长的Markdown文件 ---------->
+ # <-------- 拆分过长的Markdown文件 ---------->
pfg.run_file_split(max_token_limit=1500)
n_split = len(pfg.sp_file_contents)
- # <-------- 多线程翻译开始 ---------->
+ # <-------- 多线程翻译开始 ---------->
if language == 'en->zh':
- inputs_array = ["This is a Markdown file, translate it into Chinese, do not modify any existing Markdown commands:" +
+ inputs_array = ["This is a Markdown file, translate it into Chinese, do not modify any existing Markdown commands:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
elif language == 'zh->en':
- inputs_array = [f"This is a Markdown file, translate it into English, do not modify any existing Markdown commands:" +
+ inputs_array = [f"This is a Markdown file, translate it into English, do not modify any existing Markdown commands:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
else:
- inputs_array = [f"This is a Markdown file, translate it into {language}, do not modify any existing Markdown commands, only answer me with translated results:" +
+ inputs_array = [f"This is a Markdown file, translate it into {language}, do not modify any existing Markdown commands, only answer me with translated results:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
@@ -103,7 +103,7 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
except:
logging.error(trimmed_format_exc())
- # <-------- 整理结果,退出 ---------->
+ # <-------- 整理结果,退出 ---------->
create_report_file_name = gen_time_str() + f"-chatgpt.md"
res = write_history_to_file(gpt_response_collection, file_basename=create_report_file_name)
promote_file_to_downloadzone(res, chatbot=chatbot)
@@ -255,7 +255,7 @@ def Markdown翻译指定语言(txt, llm_kwargs, plugin_kwargs, chatbot, history,
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
-
+
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
language = plugin_kwargs.get("advanced_arg", 'Chinese')
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language=language)
\ No newline at end of file
diff --git a/crazy_functions/批量总结PDF文档.py b/crazy_functions/批量总结PDF文档.py
index 54270ab..4bd772f 100644
--- a/crazy_functions/批量总结PDF文档.py
+++ b/crazy_functions/批量总结PDF文档.py
@@ -17,7 +17,7 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
file_content, page_one = read_and_clean_pdf_text(file_name) # (尝试)按照章节切割PDF
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
-
+
TOKEN_LIMIT_PER_FRAGMENT = 2500
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
@@ -25,7 +25,7 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=str(page_one), limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model'])
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
-
+
############################## <第 1 步,从摘要中提取高价值信息,放到history中> ##################################
final_results = []
final_results.append(paper_meta)
@@ -44,10 +44,10 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} Chinese characters: {paper_fragments[i]}"
i_say_show_user = f"[{i+1}/{n_fragment}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} Chinese characters: {paper_fragments[i][:200]}"
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
- llm_kwargs, chatbot,
+ llm_kwargs, chatbot,
history=["The main idea of the previous section is?", last_iteration_result], # 迭代上一次的结果
sys_prompt="Extract the main idea of this section with Chinese." # 提示
- )
+ )
iteration_results.append(gpt_say)
last_iteration_result = gpt_say
@@ -67,15 +67,15 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
- (2):What are the past methods? What are the problems with them? Is the approach well motivated?
- (3):What is the research methodology proposed in this paper?
- (4):On what task and what performance is achieved by the methods in this paper? Can the performance support their goals?
-Follow the format of the output that follows:
+Follow the format of the output that follows:
1. Title: xxx\n\n
2. Authors: xxx\n\n
3. Affiliation: xxx\n\n
4. Keywords: xxx\n\n
5. Urls: xxx or xxx , xxx \n\n
6. Summary: \n\n
- - (1):xxx;\n
- - (2):xxx;\n
+ - (1):xxx;\n
+ - (2):xxx;\n
- (3):xxx;\n
- (4):xxx.\n\n
Be sure to use Chinese answers (proper nouns need to be marked in English), statements as concise and academic as possible,
@@ -85,8 +85,8 @@ do not have too much repetitive information, numerical values using the original
file_write_buffer.extend(final_results)
i_say, final_results = input_clipping(i_say, final_results, max_token_limit=2000)
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
- inputs=i_say, inputs_show_user='开始最终总结',
- llm_kwargs=llm_kwargs, chatbot=chatbot, history=final_results,
+ inputs=i_say, inputs_show_user='开始最终总结',
+ llm_kwargs=llm_kwargs, chatbot=chatbot, history=final_results,
sys_prompt= f"Extract the main idea of this paper with less than {NUM_OF_WORD} Chinese characters"
)
final_results.append(gpt_say)
@@ -114,8 +114,8 @@ def 批量总结PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
try:
import fitz
except:
- report_exception(chatbot, history,
- a = f"解析项目: {txt}",
+ report_exception(chatbot, history,
+ a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
@@ -134,7 +134,7 @@ def 批量总结PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
# 搜索需要处理的文件清单
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)]
-
+
# 如果没找到任何文件
if len(file_manifest) == 0:
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex或.pdf文件: {txt}")
diff --git a/crazy_functions/批量总结PDF文档pdfminer.py b/crazy_functions/批量总结PDF文档pdfminer.py
index 181d51c..4532f3d 100644
--- a/crazy_functions/批量总结PDF文档pdfminer.py
+++ b/crazy_functions/批量总结PDF文档pdfminer.py
@@ -85,10 +85,10 @@ def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbo
msg = '正常'
# ** gpt request **
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
- inputs=i_say,
- inputs_show_user=i_say_show_user,
+ inputs=i_say,
+ inputs_show_user=i_say_show_user,
llm_kwargs=llm_kwargs,
- chatbot=chatbot,
+ chatbot=chatbot,
history=[],
sys_prompt="总结文章。"
) # 带超时倒计时
@@ -106,10 +106,10 @@ def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbo
msg = '正常'
# ** gpt request **
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
- inputs=i_say,
- inputs_show_user=i_say,
+ inputs=i_say,
+ inputs_show_user=i_say,
llm_kwargs=llm_kwargs,
- chatbot=chatbot,
+ chatbot=chatbot,
history=history,
sys_prompt="总结文章。"
) # 带超时倒计时
@@ -138,8 +138,8 @@ def 批量总结PDF文档pdfminer(txt, llm_kwargs, plugin_kwargs, chatbot, histo
try:
import pdfminer, bs4
except:
- report_exception(chatbot, history,
- a = f"解析项目: {txt}",
+ report_exception(chatbot, history,
+ a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pdfminer beautifulsoup4```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
diff --git a/crazy_functions/批量翻译PDF文档_NOUGAT.py b/crazy_functions/批量翻译PDF文档_NOUGAT.py
index 7a18277..d5e33c2 100644
--- a/crazy_functions/批量翻译PDF文档_NOUGAT.py
+++ b/crazy_functions/批量翻译PDF文档_NOUGAT.py
@@ -76,8 +76,8 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
success_mmd, file_manifest_mmd, _ = get_files_from_everything(txt, type='.mmd')
success = success or success_mmd
file_manifest += file_manifest_mmd
- chatbot.append(["文件列表:", ", ".join([e.split('/')[-1] for e in file_manifest])]);
- yield from update_ui( chatbot=chatbot, history=history)
+ chatbot.append(["文件列表:", ", ".join([e.split('/')[-1] for e in file_manifest])]);
+ yield from update_ui( chatbot=chatbot, history=history)
# 检测输入参数,如没有给定输入参数,直接退出
if not success:
if txt == "": txt = '空空如也的输入栏'
diff --git a/crazy_functions/批量翻译PDF文档_多线程.py b/crazy_functions/批量翻译PDF文档_多线程.py
index 3d11162..7d6ad4f 100644
--- a/crazy_functions/批量翻译PDF文档_多线程.py
+++ b/crazy_functions/批量翻译PDF文档_多线程.py
@@ -68,7 +68,7 @@ def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwa
with open(grobid_json_res, 'w+', encoding='utf8') as f:
f.write(json.dumps(article_dict, indent=4, ensure_ascii=False))
promote_file_to_downloadzone(grobid_json_res, chatbot=chatbot)
-
+
if article_dict is None: raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG)
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
@@ -97,7 +97,7 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
-
+
# 单线,获取文章meta信息
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}",
@@ -121,7 +121,7 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
)
gpt_response_collection_md = copy.deepcopy(gpt_response_collection)
# 整理报告的格式
- for i,k in enumerate(gpt_response_collection_md):
+ for i,k in enumerate(gpt_response_collection_md):
if i%2==0:
gpt_response_collection_md[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection_md)//2}]: \n\n {paper_fragments[i//2].replace('#', '')} \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection_md)//2}]:\n "
else:
@@ -139,18 +139,18 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
# write html
try:
- ch = construct_html()
+ ch = construct_html()
orig = ""
trans = ""
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
- for i,k in enumerate(gpt_response_collection_html):
+ for i,k in enumerate(gpt_response_collection_html):
if i%2==0:
gpt_response_collection_html[i] = paper_fragments[i//2].replace('#', '')
else:
gpt_response_collection_html[i] = gpt_response_collection_html[i]
final = ["论文概况", paper_meta_info.replace('# ', '### '), "二、论文翻译", ""]
final.extend(gpt_response_collection_html)
- for i, k in enumerate(final):
+ for i, k in enumerate(final):
if i%2==0:
orig = k
if i%2==1:
diff --git a/crazy_functions/数学动画生成manim.py b/crazy_functions/数学动画生成manim.py
index 9465ccc..551a808 100644
--- a/crazy_functions/数学动画生成manim.py
+++ b/crazy_functions/数学动画生成manim.py
@@ -27,7 +27,7 @@ def eval_manim(code):
class_name = get_class_name(code)
- try:
+ try:
time_str = gen_time_str()
subprocess.check_output([sys.executable, '-c', f"from gpt_log.MyAnimation import {class_name}; {class_name}().render()"])
shutil.move(f'media/videos/1080p60/{class_name}.mp4', f'gpt_log/{class_name}-{time_str}.mp4')
@@ -36,7 +36,7 @@ def eval_manim(code):
output = e.output.decode()
print(f"Command returned non-zero exit status {e.returncode}: {output}.")
return f"Evaluating python script failed: {e.output}."
- except:
+ except:
print('generating mp4 failed')
return "Generating mp4 failed."
@@ -45,7 +45,7 @@ def get_code_block(reply):
import re
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
matches = re.findall(pattern, reply) # find all code blocks in text
- if len(matches) != 1:
+ if len(matches) != 1:
raise RuntimeError("GPT is not generating proper code.")
return matches[0].strip('python') # code block
@@ -61,7 +61,7 @@ def 动画生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
user_request 当前用户的请求信息(IP地址等)
"""
# 清空历史,以免输入溢出
- history = []
+ history = []
# 基本信息:功能、贡献者
chatbot.append([
@@ -73,24 +73,24 @@ def 动画生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
# 尝试导入依赖, 如果缺少依赖, 则给出安装建议
dep_ok = yield from inspect_dependency(chatbot=chatbot, history=history) # 刷新界面
if not dep_ok: return
-
+
# 输入
i_say = f'Generate a animation to show: ' + txt
demo = ["Here is some examples of manim", examples_of_manim()]
_, demo = input_clipping(inputs="", history=demo, max_token_limit=2560)
# 开始
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
- inputs=i_say, inputs_show_user=i_say,
- llm_kwargs=llm_kwargs, chatbot=chatbot, history=demo,
+ inputs=i_say, inputs_show_user=i_say,
+ llm_kwargs=llm_kwargs, chatbot=chatbot, history=demo,
sys_prompt=
r"Write a animation script with 3blue1brown's manim. "+
- r"Please begin with `from manim import *`. " +
+ r"Please begin with `from manim import *`. " +
r"Answer me with a code block wrapped by ```."
)
chatbot.append(["开始生成动画", "..."])
history.extend([i_say, gpt_say])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
-
+
# 将代码转为动画
code = get_code_block(gpt_say)
res = eval_manim(code)
diff --git a/crazy_functions/理解PDF文档内容.py b/crazy_functions/理解PDF文档内容.py
index 732c82c..fd935ab 100644
--- a/crazy_functions/理解PDF文档内容.py
+++ b/crazy_functions/理解PDF文档内容.py
@@ -15,7 +15,7 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
file_content, page_one = read_and_clean_pdf_text(file_name) # (尝试)按照章节切割PDF
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
-
+
TOKEN_LIMIT_PER_FRAGMENT = 2500
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
@@ -23,7 +23,7 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=str(page_one), limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model'])
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
-
+
############################## <第 1 步,从摘要中提取高价值信息,放到history中> ##################################
final_results = []
final_results.append(paper_meta)
@@ -42,10 +42,10 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i]}"
i_say_show_user = f"[{i+1}/{n_fragment}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i][:200]} ...."
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
- llm_kwargs, chatbot,
+ llm_kwargs, chatbot,
history=["The main idea of the previous section is?", last_iteration_result], # 迭代上一次的结果
sys_prompt="Extract the main idea of this section, answer me with Chinese." # 提示
- )
+ )
iteration_results.append(gpt_say)
last_iteration_result = gpt_say
@@ -76,8 +76,8 @@ def 理解PDF文档内容标准文件输入(txt, llm_kwargs, plugin_kwargs, chat
try:
import fitz
except:
- report_exception(chatbot, history,
- a = f"解析项目: {txt}",
+ report_exception(chatbot, history,
+ a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
diff --git a/crazy_functions/生成函数注释.py b/crazy_functions/生成函数注释.py
index 78aa453..20cb6d2 100644
--- a/crazy_functions/生成函数注释.py
+++ b/crazy_functions/生成函数注释.py
@@ -16,7 +16,7 @@ def 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
- if not fast_debug:
+ if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
@@ -27,7 +27,7 @@ def 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
if not fast_debug: time.sleep(2)
- if not fast_debug:
+ if not fast_debug:
res = write_history_to_file(history)
promote_file_to_downloadzone(res, chatbot=chatbot)
chatbot.append(("完成了吗?", res))
diff --git a/crazy_functions/生成多种Mermaid图表.py b/crazy_functions/生成多种Mermaid图表.py
index dc01e94..a53fad5 100644
--- a/crazy_functions/生成多种Mermaid图表.py
+++ b/crazy_functions/生成多种Mermaid图表.py
@@ -179,15 +179,15 @@ def 解析历史输入(history,llm_kwargs,file_manifest,chatbot,plugin_kwargs):
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words in Chinese: {txt[i]}"
i_say_show_user = f"[{i+1}/{n_txt}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {txt[i][:200]} ...."
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
- llm_kwargs, chatbot,
+ llm_kwargs, chatbot,
history=["The main content of the previous section is?", last_iteration_result], # 迭代上一次的结果
sys_prompt="Extracts the main content from the text section where it is located for graphing purposes, answer me with Chinese." # 提示
- )
+ )
results.append(gpt_say)
last_iteration_result = gpt_say
############################## <第 2 步,根据整理的摘要选择图表类型> ##################################
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
- gpt_say = plugin_kwargs.get("advanced_arg", "") #将图表类型参数赋值为插件参数
+ gpt_say = plugin_kwargs.get("advanced_arg", "") #将图表类型参数赋值为插件参数
results_txt = '\n'.join(results) #合并摘要
if gpt_say not in ['1','2','3','4','5','6','7','8','9']: #如插件参数不正确则使用对话模型判断
i_say_show_user = f'接下来将判断适合的图表类型,如连续3次判断失败将会使用流程图进行绘制'; gpt_say = "[Local Message] 收到。" # 用户提示
@@ -198,7 +198,7 @@ def 解析历史输入(history,llm_kwargs,file_manifest,chatbot,plugin_kwargs):
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say_show_user,
- llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
+ llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
sys_prompt=""
)
if gpt_say in ['1','2','3','4','5','6','7','8','9']: #判断返回是否正确
@@ -228,12 +228,12 @@ def 解析历史输入(history,llm_kwargs,file_manifest,chatbot,plugin_kwargs):
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say_show_user,
- llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
+ llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
sys_prompt=""
)
history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
-
+
@CatchException
def 生成多种Mermaid图表(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
@@ -249,11 +249,11 @@ def 生成多种Mermaid图表(txt, llm_kwargs, plugin_kwargs, chatbot, history,
# 基本信息:功能、贡献者
chatbot.append([
- "函数插件功能?",
+ "函数插件功能?",
"根据当前聊天历史或指定的路径文件(文件内容优先)绘制多种mermaid图表,将会由对话模型首先判断适合的图表类型,随后绘制图表。\
\n您也可以使用插件参数指定绘制的图表类型,函数插件贡献者: Menghuan1918"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
-
+
if os.path.exists(txt): #如输入区无内容则直接解析历史记录
from crazy_functions.pdf_fns.parse_word import extract_text_from_files
file_exist, final_result, page_one, file_manifest, excption = extract_text_from_files(txt, chatbot, history)
@@ -264,15 +264,15 @@ def 生成多种Mermaid图表(txt, llm_kwargs, plugin_kwargs, chatbot, history,
if excption != "":
if excption == "word":
- report_exception(chatbot, history,
- a = f"解析项目: {txt}",
+ report_exception(chatbot, history,
+ a = f"解析项目: {txt}",
b = f"找到了.doc文件,但是该文件格式不被支持,请先转化为.docx格式。")
-
+
elif excption == "pdf":
- report_exception(chatbot, history,
- a = f"解析项目: {txt}",
+ report_exception(chatbot, history,
+ a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
-
+
elif excption == "word_pip":
report_exception(chatbot, history,
a=f"解析项目: {txt}",
diff --git a/crazy_functions/知识库问答.py b/crazy_functions/知识库问答.py
index f3c7c9e..943eeef 100644
--- a/crazy_functions/知识库问答.py
+++ b/crazy_functions/知识库问答.py
@@ -9,7 +9,7 @@ install_msg ="""
3. python -m pip install unstructured[all-docs] --upgrade
-4. python -c 'import nltk; nltk.download("punkt")'
+4. python -c 'import nltk; nltk.download("punkt")'
"""
@CatchException
@@ -56,7 +56,7 @@ def 知识库文件注入(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
chatbot.append(["没有找到任何可读取文件", "当前支持的格式包括: txt, md, docx, pptx, pdf, json等"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
-
+
# < -------------------预热文本向量化模组--------------- >
chatbot.append(['
'.join(file_manifest), "正在预热文本向量化模组, 如果是第一次运行, 将消耗较长时间下载中文向量化模型..."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -109,8 +109,8 @@ def 读取知识库作答(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
chatbot.append((txt, f'[知识库 {kai_id}] ' + prompt))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
- inputs=prompt, inputs_show_user=txt,
- llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
+ inputs=prompt, inputs_show_user=txt,
+ llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
sys_prompt=system_prompt
)
history.extend((prompt, gpt_say))
diff --git a/crazy_functions/联网的ChatGPT.py b/crazy_functions/联网的ChatGPT.py
index 346492d..c121e54 100644
--- a/crazy_functions/联网的ChatGPT.py
+++ b/crazy_functions/联网的ChatGPT.py
@@ -40,10 +40,10 @@ def scrape_text(url, proxies) -> str:
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36',
'Content-Type': 'text/plain',
}
- try:
+ try:
response = requests.get(url, headers=headers, proxies=proxies, timeout=8)
if response.encoding == "ISO-8859-1": response.encoding = response.apparent_encoding
- except:
+ except:
return "无法连接到该网页"
soup = BeautifulSoup(response.text, "html.parser")
for script in soup(["script", "style"]):
@@ -66,7 +66,7 @@ def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
user_request 当前用户的请求信息(IP地址等)
"""
history = [] # 清空历史,以免输入溢出
- chatbot.append((f"请结合互联网信息回答以下问题:{txt}",
+ chatbot.append((f"请结合互联网信息回答以下问题:{txt}",
"[Local Message] 请注意,您正在调用一个[函数插件]的模板,该模板可以实现ChatGPT联网信息综合。该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板。您若希望分享新的功能模组,请不吝PR!"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
@@ -91,13 +91,13 @@ def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
# ------------- < 第3步:ChatGPT综合 > -------------
i_say = f"从以上搜索结果中抽取信息,然后回答问题:{txt}"
i_say, history = input_clipping( # 裁剪输入,从最长的条目开始裁剪,防止爆token
- inputs=i_say,
- history=history,
+ inputs=i_say,
+ history=history,
max_token_limit=model_info[llm_kwargs['llm_model']]['max_token']*3//4
)
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
- inputs=i_say, inputs_show_user=i_say,
- llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
+ inputs=i_say, inputs_show_user=i_say,
+ llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
sys_prompt="请从给定的若干条搜索结果中抽取信息,对最相关的两个搜索结果进行总结,然后回答问题。"
)
chatbot[-1] = (i_say, gpt_say)
diff --git a/crazy_functions/虚空终端.py b/crazy_functions/虚空终端.py
index 27f4499..e5fa2b6 100644
--- a/crazy_functions/虚空终端.py
+++ b/crazy_functions/虚空终端.py
@@ -33,7 +33,7 @@ explain_msg = """
- 「请调用插件,解析python源代码项目,代码我刚刚打包拖到上传区了」
- 「请问Transformer网络的结构是怎样的?」
-2. 您可以打开插件下拉菜单以了解本项目的各种能力。
+2. 您可以打开插件下拉菜单以了解本项目的各种能力。
3. 如果您使用「调用插件xxx」、「修改配置xxx」、「请问」等关键词,您的意图可以被识别的更准确。
@@ -67,7 +67,7 @@ class UserIntention(BaseModel):
def chat(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention):
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=txt, inputs_show_user=txt,
- llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
+ llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
sys_prompt=system_prompt
)
chatbot[-1] = [txt, gpt_say]
@@ -115,7 +115,7 @@ def 虚空终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
if is_the_upload_folder(txt):
state.set_state(chatbot=chatbot, key='has_provided_explaination', value=False)
appendix_msg = "\n\n**很好,您已经上传了文件**,现在请您描述您的需求。"
-
+
if is_certain or (state.has_provided_explaination):
# 如果意图明确,跳过提示环节
state.set_state(chatbot=chatbot, key='has_provided_explaination', value=True)
@@ -152,7 +152,7 @@ def 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
analyze_res = run_gpt_fn(inputs, "")
try:
user_intention = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
- lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 意图={explain_intention_to_user[user_intention.intention_type]}",
+ lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 意图={explain_intention_to_user[user_intention.intention_type]}",
except JsonStringError as e:
yield from update_ui_lastest_msg(
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 失败 当前语言模型({llm_kwargs['llm_model']})不能理解您的意图", chatbot=chatbot, history=history, delay=0)
@@ -161,7 +161,7 @@ def 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
pass
yield from update_ui_lastest_msg(
- lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 意图={explain_intention_to_user[user_intention.intention_type]}",
+ lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 意图={explain_intention_to_user[user_intention.intention_type]}",
chatbot=chatbot, history=history, delay=0)
# 用户意图: 修改本项目的配置
diff --git a/crazy_functions/解析项目源代码.py b/crazy_functions/解析项目源代码.py
index dfd0de0..3df13d4 100644
--- a/crazy_functions/解析项目源代码.py
+++ b/crazy_functions/解析项目源代码.py
@@ -82,13 +82,13 @@ def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
inputs=inputs, inputs_show_user=inputs_show_user, llm_kwargs=llm_kwargs, chatbot=chatbot,
history=this_iteration_history_feed, # 迭代之前的分析
sys_prompt="你是一个程序架构分析师,正在分析一个项目的源代码。" + sys_prompt_additional)
-
+
diagram_code = make_diagram(this_iteration_files, result, this_iteration_history_feed)
summary = "请用一句话概括这些文件的整体功能。\n\n" + diagram_code
summary_result = yield from request_gpt_model_in_new_thread_with_ui_alive(
- inputs=summary,
- inputs_show_user=summary,
- llm_kwargs=llm_kwargs,
+ inputs=summary,
+ inputs_show_user=summary,
+ llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=[i_say, result], # 迭代之前的分析
sys_prompt="你是一个程序架构分析师,正在分析一个项目的源代码。" + sys_prompt_additional)
diff --git a/crazy_functions/询问多个大语言模型.py b/crazy_functions/询问多个大语言模型.py
index 069d440..a608b7b 100644
--- a/crazy_functions/询问多个大语言模型.py
+++ b/crazy_functions/询问多个大语言模型.py
@@ -20,8 +20,8 @@ def 同时问询(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
# llm_kwargs['llm_model'] = 'chatglm&gpt-3.5-turbo&api2d-gpt-3.5-turbo' # 支持任意数量的llm接口,用&符号分隔
llm_kwargs['llm_model'] = MULTI_QUERY_LLM_MODELS # 支持任意数量的llm接口,用&符号分隔
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
- inputs=txt, inputs_show_user=txt,
- llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
+ inputs=txt, inputs_show_user=txt,
+ llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
sys_prompt=system_prompt,
retry_times_at_unknown_error=0
)
@@ -52,8 +52,8 @@ def 同时问询_指定模型(txt, llm_kwargs, plugin_kwargs, chatbot, history,
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
- inputs=txt, inputs_show_user=txt,
- llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
+ inputs=txt, inputs_show_user=txt,
+ llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
sys_prompt=system_prompt,
retry_times_at_unknown_error=0
)
diff --git a/crazy_functions/语音助手.py b/crazy_functions/语音助手.py
index 8af0fd9..1e85b36 100644
--- a/crazy_functions/语音助手.py
+++ b/crazy_functions/语音助手.py
@@ -39,7 +39,7 @@ class AsyncGptTask():
try:
MAX_TOKEN_ALLO = 2560
i_say, history = input_clipping(i_say, history, max_token_limit=MAX_TOKEN_ALLO)
- gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, llm_kwargs=llm_kwargs, history=history, sys_prompt=sys_prompt,
+ gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, llm_kwargs=llm_kwargs, history=history, sys_prompt=sys_prompt,
observe_window=observe_window[index], console_slience=True)
except ConnectionAbortedError as token_exceed_err:
print('至少一个线程任务Token溢出而失败', e)
@@ -120,7 +120,7 @@ class InterviewAssistant(AliyunASR):
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
self.plugin_wd.feed()
- if self.event_on_result_chg.is_set():
+ if self.event_on_result_chg.is_set():
# called when some words have finished
self.event_on_result_chg.clear()
chatbot[-1] = list(chatbot[-1])
@@ -151,7 +151,7 @@ class InterviewAssistant(AliyunASR):
# add gpt task 创建子线程请求gpt,避免线程阻塞
history = chatbot2history(chatbot)
self.agt.add_async_gpt_task(self.buffered_sentence, len(chatbot)-1, llm_kwargs, history, system_prompt)
-
+
self.buffered_sentence = ""
chatbot.append(["[ 请讲话 ]", "[ 正在等您说完问题 ]"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
diff --git a/crazy_functions/谷歌检索小助手.py b/crazy_functions/谷歌检索小助手.py
index 8b7ea3f..2787351 100644
--- a/crazy_functions/谷歌检索小助手.py
+++ b/crazy_functions/谷歌检索小助手.py
@@ -20,10 +20,10 @@ def get_meta_information(url, chatbot, history):
proxies = get_conf('proxies')
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36',
- 'Accept-Encoding': 'gzip, deflate, br',
+ 'Accept-Encoding': 'gzip, deflate, br',
'Accept-Language': 'en-US,en;q=0.9,zh-CN;q=0.8,zh;q=0.7',
'Cache-Control':'max-age=0',
- 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
+ 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
'Connection': 'keep-alive'
}
try:
@@ -95,7 +95,7 @@ def get_meta_information(url, chatbot, history):
)
try: paper = next(search.results())
except: paper = None
-
+
is_match = paper is not None and string_similar(title, paper.title) > 0.90
# 如果在Arxiv上匹配失败,检索文章的历史版本的题目
@@ -146,8 +146,8 @@ def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
import math
from bs4 import BeautifulSoup
except:
- report_exception(chatbot, history,
- a = f"解析项目: {txt}",
+ report_exception(chatbot, history,
+ a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade beautifulsoup4 arxiv```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
@@ -163,7 +163,7 @@ def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
if len(meta_paper_info_list[:batchsize]) > 0:
i_say = "下面是一些学术文献的数据,提取出以下内容:" + \
"1、英文题目;2、中文题目翻译;3、作者;4、arxiv公开(is_paper_in_arxiv);4、引用数量(cite);5、中文摘要翻译。" + \
- f"以下是信息源:{str(meta_paper_info_list[:batchsize])}"
+ f"以下是信息源:{str(meta_paper_info_list[:batchsize])}"
inputs_show_user = f"请分析此页面中出现的所有文章:{txt},这是第{batch+1}批"
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
@@ -175,11 +175,11 @@ def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
history.extend([ f"第{batch+1}批", gpt_say ])
meta_paper_info_list = meta_paper_info_list[batchsize:]
- chatbot.append(["状态?",
+ chatbot.append(["状态?",
"已经全部完成,您可以试试让AI写一个Related Works,例如您可以继续输入Write a \"Related Works\" section about \"你搜索的研究领域\" for me."])
msg = '正常'
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
path = write_history_to_file(history)
promote_file_to_downloadzone(path, chatbot=chatbot)
- chatbot.append(("完成了吗?", path));
+ chatbot.append(("完成了吗?", path));
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
diff --git a/crazy_functions/高级功能函数模板.py b/crazy_functions/高级功能函数模板.py
index d22a674..f75f0e8 100644
--- a/crazy_functions/高级功能函数模板.py
+++ b/crazy_functions/高级功能函数模板.py
@@ -40,7 +40,7 @@ def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
"""
history = [] # 清空历史,以免输入溢出
chatbot.append((
- "您正在调用插件:历史上的今天",
+ "您正在调用插件:历史上的今天",
"[Local Message] 请注意,您正在调用一个[函数插件]的模板,该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板(该函数只有20多行代码)。此外我们也提供可同步处理大量文件的多线程Demo供您参考。您若希望分享新的功能模组,请不吝PR!" + 高阶功能模板函数示意图))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
for i in range(5):
@@ -48,8 +48,8 @@ def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
currentDay = (datetime.date.today() + datetime.timedelta(days=i)).day
i_say = f'历史中哪些事件发生在{currentMonth}月{currentDay}日?列举两条并发送相关图片。发送图片时,请使用Markdown,将Unsplash API中的PUT_YOUR_QUERY_HERE替换成描述该事件的一个最重要的单词。'
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
- inputs=i_say, inputs_show_user=i_say,
- llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
+ inputs=i_say, inputs_show_user=i_say,
+ llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
sys_prompt="当你想发送一张照片时,请使用Markdown, 并且不要有反斜线, 不要用代码块。使用 Unsplash API (https://source.unsplash.com/1280x720/? < PUT_YOUR_QUERY_HERE >)。"
)
chatbot[-1] = (i_say, gpt_say)
@@ -84,15 +84,15 @@ def 测试图表渲染(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
history = [] # 清空历史,以免输入溢出
chatbot.append(("这是什么功能?", "一个测试mermaid绘制图表的功能,您可以在输入框中输入一些关键词,然后使用mermaid+llm绘制图表。"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
-
+
if txt == "": txt = "空白的输入栏" # 调皮一下
-
+
i_say_show_user = f'请绘制有关“{txt}”的逻辑关系图。'
i_say = PROMPT.format(subject=txt)
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say_show_user,
- llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
+ llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
sys_prompt=""
)
history.append(i_say); history.append(gpt_say)
diff --git a/multi_language.py b/multi_language.py
index c65872a..93c3178 100644
--- a/multi_language.py
+++ b/multi_language.py
@@ -1,7 +1,7 @@
"""
Translate this project to other languages (experimental, please open an issue if there is any bug)
-
-
+
+
Usage:
1. modify config.py, set your LLM_MODEL and API_KEY(s) to provide access to OPENAI (or any other LLM model provider)
@@ -11,20 +11,20 @@
3. modify TransPrompt (below ↓)
TransPrompt = f"Replace each json value `#` with translated results in English, e.g., \"原始文本\":\"TranslatedText\". Keep Json format. Do not answer #."
- 4. Run `python multi_language.py`.
+ 4. Run `python multi_language.py`.
Note: You need to run it multiple times to increase translation coverage because GPT makes mistakes sometimes.
(You can also run `CACHE_ONLY=True python multi_language.py` to use cached translation mapping)
5. Find the translated program in `multi-language\English\*`
-
+
P.S.
-
+
- The translation mapping will be stored in `docs/translation_xxxx.json`, you can revised mistaken translation there.
-
+
- If you would like to share your `docs/translation_xxxx.json`, (so that everyone can use the cached & revised translation mapping), please open a Pull Request
- If there is any translation error in `docs/translation_xxxx.json`, please open a Pull Request
-
+
- Welcome any Pull Request, regardless of language
"""
@@ -58,7 +58,7 @@ if not os.path.exists(CACHE_FOLDER):
def lru_file_cache(maxsize=128, ttl=None, filename=None):
"""
- Decorator that caches a function's return value after being called with given arguments.
+ Decorator that caches a function's return value after being called with given arguments.
It uses a Least Recently Used (LRU) cache strategy to limit the size of the cache.
maxsize: Maximum size of the cache. Defaults to 128.
ttl: Time-to-Live of the cache. If a value hasn't been accessed for `ttl` seconds, it will be evicted from the cache.
@@ -151,7 +151,7 @@ def map_to_json(map, language):
def read_map_from_json(language):
if os.path.exists(f'docs/translate_{language.lower()}.json'):
- with open(f'docs/translate_{language.lower()}.json', 'r', encoding='utf8') as f:
+ with open(f'docs/translate_{language.lower()}.json', 'r', encoding='utf8') as f:
res = json.load(f)
res = {k:v for k, v in res.items() if v is not None and contains_chinese(k)}
return res
@@ -168,7 +168,7 @@ def advanced_split(splitted_string, spliter, include_spliter=False):
splitted[i] += spliter
splitted[i] = splitted[i].strip()
for i in reversed(range(len(splitted))):
- if not contains_chinese(splitted[i]):
+ if not contains_chinese(splitted[i]):
splitted.pop(i)
splitted_string_tmp.extend(splitted)
else:
@@ -183,12 +183,12 @@ def trans(word_to_translate, language, special=False):
if len(word_to_translate) == 0: return {}
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from toolbox import get_conf, ChatBotWithCookies, load_chat_cookies
-
+
cookies = load_chat_cookies()
llm_kwargs = {
'api_key': cookies['api_key'],
'llm_model': cookies['llm_model'],
- 'top_p':1.0,
+ 'top_p':1.0,
'max_length': None,
'temperature':0.4,
}
@@ -204,12 +204,12 @@ def trans(word_to_translate, language, special=False):
sys_prompt_array = [f"Translate following sentences to {LANG}. E.g., You should translate sentences to the following format ['translation of sentence 1', 'translation of sentence 2']. Do NOT answer with Chinese!" for _ in inputs_array]
chatbot = ChatBotWithCookies(llm_kwargs)
gpt_say_generator = request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
- inputs_array,
- inputs_show_user_array,
- llm_kwargs,
- chatbot,
- history_array,
- sys_prompt_array,
+ inputs_array,
+ inputs_show_user_array,
+ llm_kwargs,
+ chatbot,
+ history_array,
+ sys_prompt_array,
)
while True:
try:
@@ -224,7 +224,7 @@ def trans(word_to_translate, language, special=False):
try:
res_before_trans = eval(result[i-1])
res_after_trans = eval(result[i])
- if len(res_before_trans) != len(res_after_trans):
+ if len(res_before_trans) != len(res_after_trans):
raise RuntimeError
for a,b in zip(res_before_trans, res_after_trans):
translated_result[a] = b
@@ -246,12 +246,12 @@ def trans_json(word_to_translate, language, special=False):
if len(word_to_translate) == 0: return {}
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from toolbox import get_conf, ChatBotWithCookies, load_chat_cookies
-
+
cookies = load_chat_cookies()
llm_kwargs = {
'api_key': cookies['api_key'],
'llm_model': cookies['llm_model'],
- 'top_p':1.0,
+ 'top_p':1.0,
'max_length': None,
'temperature':0.4,
}
@@ -261,18 +261,18 @@ def trans_json(word_to_translate, language, special=False):
word_to_translate_split = split_list(word_to_translate, N_EACH_REQ)
inputs_array = [{k:"#" for k in s} for s in word_to_translate_split]
inputs_array = [ json.dumps(i, ensure_ascii=False) for i in inputs_array]
-
+
inputs_show_user_array = inputs_array
history_array = [[] for _ in inputs_array]
sys_prompt_array = [TransPrompt for _ in inputs_array]
chatbot = ChatBotWithCookies(llm_kwargs)
gpt_say_generator = request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
- inputs_array,
- inputs_show_user_array,
- llm_kwargs,
- chatbot,
- history_array,
- sys_prompt_array,
+ inputs_array,
+ inputs_show_user_array,
+ llm_kwargs,
+ chatbot,
+ history_array,
+ sys_prompt_array,
)
while True:
try:
@@ -336,7 +336,7 @@ def step_1_core_key_translate():
cached_translation = read_map_from_json(language=LANG_STD)
cached_translation_keys = list(cached_translation.keys())
for d in chinese_core_keys_norepeat:
- if d not in cached_translation_keys:
+ if d not in cached_translation_keys:
need_translate.append(d)
if CACHE_ONLY:
@@ -379,7 +379,7 @@ def step_1_core_key_translate():
# read again
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
-
+
for k, v in chinese_core_keys_norepeat_mapping.items():
content = content.replace(k, v)
@@ -390,7 +390,7 @@ def step_1_core_key_translate():
def step_2_core_key_translate():
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
- # step2
+ # step2
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
def load_string(strings, string_input):
@@ -423,7 +423,7 @@ def step_2_core_key_translate():
splitted_string = advanced_split(splitted_string, spliter=" ", include_spliter=False)
splitted_string = advanced_split(splitted_string, spliter="- ", include_spliter=False)
splitted_string = advanced_split(splitted_string, spliter="---", include_spliter=False)
-
+
# --------------------------------------
for j, s in enumerate(splitted_string): # .com
if '.com' in s: continue
@@ -457,7 +457,7 @@ def step_2_core_key_translate():
comments_arr = []
for code_sp in content.splitlines():
comments = re.findall(r'#.*$', code_sp)
- for comment in comments:
+ for comment in comments:
load_string(strings=comments_arr, string_input=comment)
string_literals.extend(comments_arr)
@@ -479,7 +479,7 @@ def step_2_core_key_translate():
cached_translation = read_map_from_json(language=LANG)
cached_translation_keys = list(cached_translation.keys())
for d in chinese_literal_names_norepeat:
- if d not in cached_translation_keys:
+ if d not in cached_translation_keys:
need_translate.append(d)
if CACHE_ONLY:
@@ -504,18 +504,18 @@ def step_2_core_key_translate():
# read again
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
-
+
for k, v in cached_translation.items():
if v is None: continue
- if '"' in v:
+ if '"' in v:
v = v.replace('"', "`")
- if '\'' in v:
+ if '\'' in v:
v = v.replace('\'', "`")
content = content.replace(k, v)
with open(file_path, 'w', encoding='utf-8') as f:
f.write(content)
-
+
if file.strip('.py') in cached_translation:
file_new = cached_translation[file.strip('.py')] + '.py'
file_path_new = os.path.join(root, file_new)
diff --git a/request_llms/bridge_all.py b/request_llms/bridge_all.py
index d7f2ad9..9470747 100644
--- a/request_llms/bridge_all.py
+++ b/request_llms/bridge_all.py
@@ -8,10 +8,10 @@
具备多线程调用能力的函数:在函数插件中被调用,灵活而简洁
2. predict_no_ui_long_connection(...)
"""
-import tiktoken, copy
+import tiktoken, copy, re
from functools import lru_cache
from concurrent.futures import ThreadPoolExecutor
-from toolbox import get_conf, trimmed_format_exc, apply_gpt_academic_string_mask
+from toolbox import get_conf, trimmed_format_exc, apply_gpt_academic_string_mask, read_one_api_model_name
from .bridge_chatgpt import predict_no_ui_long_connection as chatgpt_noui
from .bridge_chatgpt import predict as chatgpt_ui
@@ -61,6 +61,9 @@ API_URL_REDIRECT, AZURE_ENDPOINT, AZURE_ENGINE = get_conf("API_URL_REDIRECT", "A
openai_endpoint = "https://api.openai.com/v1/chat/completions"
api2d_endpoint = "https://openai.api2d.net/v1/chat/completions"
newbing_endpoint = "wss://sydney.bing.com/sydney/ChatHub"
+gemini_endpoint = "https://generativelanguage.googleapis.com/v1beta/models"
+claude_endpoint = "https://api.anthropic.com"
+
if not AZURE_ENDPOINT.endswith('/'): AZURE_ENDPOINT += '/'
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
# 兼容旧版的配置
@@ -75,7 +78,8 @@ except:
if openai_endpoint in API_URL_REDIRECT: openai_endpoint = API_URL_REDIRECT[openai_endpoint]
if api2d_endpoint in API_URL_REDIRECT: api2d_endpoint = API_URL_REDIRECT[api2d_endpoint]
if newbing_endpoint in API_URL_REDIRECT: newbing_endpoint = API_URL_REDIRECT[newbing_endpoint]
-
+if gemini_endpoint in API_URL_REDIRECT: gemini_endpoint = API_URL_REDIRECT[gemini_endpoint]
+if claude_endpoint in API_URL_REDIRECT: claude_endpoint = API_URL_REDIRECT[claude_endpoint]
# 获取tokenizer
tokenizer_gpt35 = LazyloadTiktoken("gpt-3.5-turbo")
@@ -291,7 +295,7 @@ model_info = {
"gemini-pro": {
"fn_with_ui": genai_ui,
"fn_without_ui": genai_noui,
- "endpoint": None,
+ "endpoint": gemini_endpoint,
"max_token": 1024 * 32,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
@@ -299,7 +303,7 @@ model_info = {
"gemini-pro-vision": {
"fn_with_ui": genai_ui,
"fn_without_ui": genai_noui,
- "endpoint": None,
+ "endpoint": gemini_endpoint,
"max_token": 1024 * 32,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
@@ -349,25 +353,57 @@ for model in AVAIL_LLM_MODELS:
model_info.update({model: mi})
# -=-=-=-=-=-=- 以下部分是新加入的模型,可能附带额外依赖 -=-=-=-=-=-=-
-if "claude-1-100k" in AVAIL_LLM_MODELS or "claude-2" in AVAIL_LLM_MODELS:
+# claude家族
+claude_models = ["claude-instant-1.2","claude-2.0","claude-2.1","claude-3-sonnet-20240229","claude-3-opus-20240229"]
+if any(item in claude_models for item in AVAIL_LLM_MODELS):
from .bridge_claude import predict_no_ui_long_connection as claude_noui
from .bridge_claude import predict as claude_ui
model_info.update({
- "claude-1-100k": {
+ "claude-instant-1.2": {
"fn_with_ui": claude_ui,
"fn_without_ui": claude_noui,
- "endpoint": None,
- "max_token": 8196,
+ "endpoint": claude_endpoint,
+ "max_token": 100000,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
})
model_info.update({
- "claude-2": {
+ "claude-2.0": {
"fn_with_ui": claude_ui,
"fn_without_ui": claude_noui,
- "endpoint": None,
- "max_token": 8196,
+ "endpoint": claude_endpoint,
+ "max_token": 100000,
+ "tokenizer": tokenizer_gpt35,
+ "token_cnt": get_token_num_gpt35,
+ },
+ })
+ model_info.update({
+ "claude-2.1": {
+ "fn_with_ui": claude_ui,
+ "fn_without_ui": claude_noui,
+ "endpoint": claude_endpoint,
+ "max_token": 200000,
+ "tokenizer": tokenizer_gpt35,
+ "token_cnt": get_token_num_gpt35,
+ },
+ })
+ model_info.update({
+ "claude-3-sonnet-20240229": {
+ "fn_with_ui": claude_ui,
+ "fn_without_ui": claude_noui,
+ "endpoint": claude_endpoint,
+ "max_token": 200000,
+ "tokenizer": tokenizer_gpt35,
+ "token_cnt": get_token_num_gpt35,
+ },
+ })
+ model_info.update({
+ "claude-3-opus-20240229": {
+ "fn_with_ui": claude_ui,
+ "fn_without_ui": claude_noui,
+ "endpoint": claude_endpoint,
+ "max_token": 200000,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
@@ -675,22 +711,28 @@ if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
})
except:
print(trimmed_format_exc())
-# if "skylark" in AVAIL_LLM_MODELS:
-# try:
-# from .bridge_skylark2 import predict_no_ui_long_connection as skylark_noui
-# from .bridge_skylark2 import predict as skylark_ui
-# model_info.update({
-# "skylark": {
-# "fn_with_ui": skylark_ui,
-# "fn_without_ui": skylark_noui,
-# "endpoint": None,
-# "max_token": 4096,
-# "tokenizer": tokenizer_gpt35,
-# "token_cnt": get_token_num_gpt35,
-# }
-# })
-# except:
-# print(trimmed_format_exc())
+# -=-=-=-=-=-=- one-api 对齐支持 -=-=-=-=-=-=-
+for model in [m for m in AVAIL_LLM_MODELS if m.startswith("one-api-")]:
+ # 为了更灵活地接入one-api多模型管理界面,设计了此接口,例子:AVAIL_LLM_MODELS = ["one-api-mixtral-8x7b(max_token=6666)"]
+ # 其中
+ # "one-api-" 是前缀(必要)
+ # "mixtral-8x7b" 是模型名(必要)
+ # "(max_token=6666)" 是配置(非必要)
+ try:
+ _, max_token_tmp = read_one_api_model_name(model)
+ except:
+ print(f"one-api模型 {model} 的 max_token 配置不是整数,请检查配置文件。")
+ continue
+ model_info.update({
+ model: {
+ "fn_with_ui": chatgpt_ui,
+ "fn_without_ui": chatgpt_noui,
+ "endpoint": openai_endpoint,
+ "max_token": max_token_tmp,
+ "tokenizer": tokenizer_gpt35,
+ "token_cnt": get_token_num_gpt35,
+ },
+ })
# <-- 用于定义和切换多个azure模型 -->
diff --git a/request_llms/bridge_chatglm.py b/request_llms/bridge_chatglm.py
index c58495d..990556a 100644
--- a/request_llms/bridge_chatglm.py
+++ b/request_llms/bridge_chatglm.py
@@ -56,15 +56,15 @@ class GetGLM2Handle(LocalLLMHandle):
query, max_length, top_p, temperature, history = adaptor(kwargs)
- for response, history in self._model.stream_chat(self._tokenizer,
- query,
- history,
+ for response, history in self._model.stream_chat(self._tokenizer,
+ query,
+ history,
max_length=max_length,
top_p=top_p,
temperature=temperature,
):
yield response
-
+
def try_to_import_special_deps(self, **kwargs):
# import something that will raise error if the user does not install requirement_*.txt
# 🏃♂️🏃♂️🏃♂️ 主进程执行
diff --git a/request_llms/bridge_chatglm3.py b/request_llms/bridge_chatglm3.py
index 3caa476..aecfc69 100644
--- a/request_llms/bridge_chatglm3.py
+++ b/request_llms/bridge_chatglm3.py
@@ -55,15 +55,15 @@ class GetGLM3Handle(LocalLLMHandle):
query, max_length, top_p, temperature, history = adaptor(kwargs)
- for response, history in self._model.stream_chat(self._tokenizer,
- query,
- history,
+ for response, history in self._model.stream_chat(self._tokenizer,
+ query,
+ history,
max_length=max_length,
top_p=top_p,
temperature=temperature,
):
yield response
-
+
def try_to_import_special_deps(self, **kwargs):
# import something that will raise error if the user does not install requirement_*.txt
# 🏃♂️🏃♂️🏃♂️ 主进程执行
diff --git a/request_llms/bridge_chatglmft.py b/request_llms/bridge_chatglmft.py
index d812bae..84f1426 100644
--- a/request_llms/bridge_chatglmft.py
+++ b/request_llms/bridge_chatglmft.py
@@ -37,7 +37,7 @@ class GetGLMFTHandle(Process):
self.check_dependency()
self.start()
self.threadLock = threading.Lock()
-
+
def check_dependency(self):
try:
import sentencepiece
@@ -101,7 +101,7 @@ class GetGLMFTHandle(Process):
break
except Exception as e:
retry += 1
- if retry > 3:
+ if retry > 3:
self.child.send('[Local Message] Call ChatGLMFT fail 不能正常加载ChatGLMFT的参数。')
raise RuntimeError("不能正常加载ChatGLMFT的参数!")
@@ -113,7 +113,7 @@ class GetGLMFTHandle(Process):
for response, history in self.chatglmft_model.stream_chat(self.chatglmft_tokenizer, **kwargs):
self.child.send(response)
# # 中途接收可能的终止指令(如果有的话)
- # if self.child.poll():
+ # if self.child.poll():
# command = self.child.recv()
# if command == '[Terminate]': break
except:
@@ -133,7 +133,7 @@ class GetGLMFTHandle(Process):
else:
break
self.threadLock.release()
-
+
global glmft_handle
glmft_handle = None
#################################################################################
@@ -146,7 +146,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
if glmft_handle is None:
glmft_handle = GetGLMFTHandle()
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + glmft_handle.info
- if not glmft_handle.success:
+ if not glmft_handle.success:
error = glmft_handle.info
glmft_handle = None
raise RuntimeError(error)
@@ -161,7 +161,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
response = ""
for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
if len(observe_window) >= 1: observe_window[0] = response
- if len(observe_window) >= 2:
+ if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("程序终止。")
return response
@@ -180,7 +180,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
glmft_handle = GetGLMFTHandle()
chatbot[-1] = (inputs, load_message + "\n\n" + glmft_handle.info)
yield from update_ui(chatbot=chatbot, history=[])
- if not glmft_handle.success:
+ if not glmft_handle.success:
glmft_handle = None
return
diff --git a/request_llms/bridge_chatglmonnx.py b/request_llms/bridge_chatglmonnx.py
index 4b90571..4cf7095 100644
--- a/request_llms/bridge_chatglmonnx.py
+++ b/request_llms/bridge_chatglmonnx.py
@@ -59,7 +59,7 @@ class GetONNXGLMHandle(LocalLLMHandle):
temperature=temperature,
):
yield answer
-
+
def try_to_import_special_deps(self, **kwargs):
# import something that will raise error if the user does not install requirement_*.txt
# 🏃♂️🏃♂️🏃♂️ 子进程执行
diff --git a/request_llms/bridge_chatgpt.py b/request_llms/bridge_chatgpt.py
index e8327d4..692d85a 100644
--- a/request_llms/bridge_chatgpt.py
+++ b/request_llms/bridge_chatgpt.py
@@ -21,7 +21,7 @@ import random
# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
-from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc, is_the_upload_folder
+from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc, is_the_upload_folder, read_one_api_model_name
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
@@ -358,6 +358,9 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
model = llm_kwargs['llm_model']
if llm_kwargs['llm_model'].startswith('api2d-'):
model = llm_kwargs['llm_model'][len('api2d-'):]
+ if llm_kwargs['llm_model'].startswith('one-api-'):
+ model = llm_kwargs['llm_model'][len('one-api-'):]
+ model, _ = read_one_api_model_name(model)
if model == "gpt-3.5-random": # 随机选择, 绕过openai访问频率限制
model = random.choice([
diff --git a/request_llms/bridge_chatgpt_vision.py b/request_llms/bridge_chatgpt_vision.py
index ebcf968..45b71bd 100644
--- a/request_llms/bridge_chatgpt_vision.py
+++ b/request_llms/bridge_chatgpt_vision.py
@@ -27,7 +27,7 @@ timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check
def report_invalid_key(key):
- if get_conf("BLOCK_INVALID_APIKEY"):
+ if get_conf("BLOCK_INVALID_APIKEY"):
# 实验性功能,自动检测并屏蔽失效的KEY,请勿使用
from request_llms.key_manager import ApiKeyManager
api_key = ApiKeyManager().add_key_to_blacklist(key)
@@ -51,13 +51,13 @@ def decode_chunk(chunk):
choice_valid = False
has_content = False
has_role = False
- try:
+ try:
chunkjson = json.loads(chunk_decoded[6:])
has_choices = 'choices' in chunkjson
if has_choices: choice_valid = (len(chunkjson['choices']) > 0)
if has_choices and choice_valid: has_content = "content" in chunkjson['choices'][0]["delta"]
if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"]
- except:
+ except:
pass
return chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role
@@ -103,7 +103,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
raw_input = inputs
logging.info(f'[raw_input] {raw_input}')
- def make_media_input(inputs, image_paths):
+ def make_media_input(inputs, image_paths):
for image_path in image_paths:
inputs = inputs + f'
})
'
return inputs
@@ -122,7 +122,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
return
-
+
# 检查endpoint是否合法
try:
from .bridge_all import model_info
@@ -150,7 +150,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
if retry > MAX_RETRY: raise TimeoutError
gpt_replying_buffer = ""
-
+
is_head_of_the_stream = True
if stream:
stream_response = response.iter_lines()
@@ -162,21 +162,21 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
chunk_decoded = chunk.decode()
error_msg = chunk_decoded
# 首先排除一个one-api没有done数据包的第三方Bug情形
- if len(gpt_replying_buffer.strip()) > 0 and len(error_msg) == 0:
+ if len(gpt_replying_buffer.strip()) > 0 and len(error_msg) == 0:
yield from update_ui(chatbot=chatbot, history=history, msg="检测到有缺陷的非OpenAI官方接口,建议选择更稳定的接口。")
break
# 其他情况,直接返回报错
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg, api_key)
yield from update_ui(chatbot=chatbot, history=history, msg="非OpenAI官方接口返回了错误:" + chunk.decode()) # 刷新界面
return
-
+
# 提前读取一些信息 (用于判断异常)
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r"content" not in chunk_decoded):
# 数据流的第一帧不携带content
is_head_of_the_stream = False; continue
-
+
if chunk:
try:
if has_choices and not choice_valid:
@@ -220,7 +220,7 @@ def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg,
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
if "reduce the length" in error_msg:
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
- history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
+ history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
elif "does not exist" in error_msg:
@@ -260,7 +260,7 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths):
"Authorization": f"Bearer {api_key}"
}
if API_ORG.startswith('org-'): headers.update({"OpenAI-Organization": API_ORG})
- if llm_kwargs['llm_model'].startswith('azure-'):
+ if llm_kwargs['llm_model'].startswith('azure-'):
headers.update({"api-key": api_key})
if llm_kwargs['llm_model'] in AZURE_CFG_ARRAY.keys():
azure_api_key_unshared = AZURE_CFG_ARRAY[llm_kwargs['llm_model']]["AZURE_API_KEY"]
@@ -294,7 +294,7 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths):
payload = {
"model": model,
- "messages": messages,
+ "messages": messages,
"temperature": llm_kwargs['temperature'], # 1.0,
"top_p": llm_kwargs['top_p'], # 1.0,
"n": 1,
diff --git a/request_llms/bridge_chatgpt_website.py b/request_llms/bridge_chatgpt_website.py
index f2f0709..94e1ebb 100644
--- a/request_llms/bridge_chatgpt_website.py
+++ b/request_llms/bridge_chatgpt_website.py
@@ -73,12 +73,12 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
result = ''
while True:
try: chunk = next(stream_response).decode()
- except StopIteration:
+ except StopIteration:
break
except requests.exceptions.ConnectionError:
chunk = next(stream_response).decode() # 失败了,重试一次?再失败就没办法了。
if len(chunk)==0: continue
- if not chunk.startswith('data:'):
+ if not chunk.startswith('data:'):
error_msg = get_full_error(chunk.encode('utf8'), stream_response).decode()
if "reduce the length" in error_msg:
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
@@ -89,14 +89,14 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
delta = json_data["delta"]
if len(delta) == 0: break
if "role" in delta: continue
- if "content" in delta:
+ if "content" in delta:
result += delta["content"]
if not console_slience: print(delta["content"], end='')
- if observe_window is not None:
+ if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1: observe_window[0] += delta["content"]
# 看门狗,如果超过期限没有喂狗,则终止
- if len(observe_window) >= 2:
+ if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("用户取消了程序。")
else: raise RuntimeError("意外Json结构:"+delta)
@@ -132,7 +132,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
return
-
+
history.append(inputs); history.append("")
retry = 0
@@ -151,7 +151,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
if retry > MAX_RETRY: raise TimeoutError
gpt_replying_buffer = ""
-
+
is_head_of_the_stream = True
if stream:
stream_response = response.iter_lines()
@@ -165,12 +165,12 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
yield from update_ui(chatbot=chatbot, history=history, msg="非Openai官方接口返回了错误:" + chunk.decode()) # 刷新界面
return
-
+
# print(chunk.decode()[6:])
if is_head_of_the_stream and (r'"object":"error"' not in chunk.decode()):
# 数据流的第一帧不携带content
is_head_of_the_stream = False; continue
-
+
if chunk:
try:
chunk_decoded = chunk.decode()
@@ -203,7 +203,7 @@ def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
if "reduce the length" in error_msg:
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
- history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
+ history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
# history = [] # 清除历史
@@ -264,7 +264,7 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
payload = {
"model": llm_kwargs['llm_model'].strip('api2d-'),
- "messages": messages,
+ "messages": messages,
"temperature": llm_kwargs['temperature'], # 1.0,
"top_p": llm_kwargs['top_p'], # 1.0,
"n": 1,
diff --git a/request_llms/bridge_claude.py b/request_llms/bridge_claude.py
index 42b7505..50c0329 100644
--- a/request_llms/bridge_claude.py
+++ b/request_llms/bridge_claude.py
@@ -11,13 +11,12 @@
"""
import os
-import json
import time
-import gradio as gr
-import logging
import traceback
-import requests
-import importlib
+from toolbox import get_conf, update_ui, trimmed_format_exc, encode_image, every_image_file_in_path
+
+picture_system_prompt = "\n当回复图像时,必须说明正在回复哪张图像。所有图像仅在最后一个问题中提供,即使它们在历史记录中被提及。请使用'这是第X张图像:'的格式来指明您正在描述的是哪张图像。"
+Claude_3_Models = ["claude-3-sonnet-20240229", "claude-3-opus-20240229"]
# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
@@ -56,7 +55,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
"""
from anthropic import Anthropic
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
- prompt = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
+ if inputs == "": inputs = "空空如也的输入栏"
+ message = generate_payload(inputs, llm_kwargs, history, stream=True, image_paths=None)
retry = 0
if len(ANTHROPIC_API_KEY) == 0:
raise RuntimeError("没有设置ANTHROPIC_API_KEY选项")
@@ -65,15 +65,16 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
try:
# make a POST request to the API endpoint, stream=False
from .bridge_all import model_info
- anthropic = Anthropic(api_key=ANTHROPIC_API_KEY)
+ anthropic = Anthropic(api_key=ANTHROPIC_API_KEY, base_url=model_info[llm_kwargs['llm_model']]['endpoint'])
# endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
# with ProxyNetworkActivate()
- stream = anthropic.completions.create(
- prompt=prompt,
- max_tokens_to_sample=4096, # The maximum number of tokens to generate before stopping.
+ stream = anthropic.messages.create(
+ messages=message,
+ max_tokens=4096, # The maximum number of tokens to generate before stopping.
model=llm_kwargs['llm_model'],
stream=True,
- temperature = llm_kwargs['temperature']
+ temperature = llm_kwargs['temperature'],
+ system=sys_prompt
)
break
except Exception as e:
@@ -82,15 +83,19 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
if retry > MAX_RETRY: raise TimeoutError
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
result = ''
- try:
+ try:
for completion in stream:
- result += completion.completion
- if not console_slience: print(completion.completion, end='')
- if observe_window is not None:
+ if completion.type == "message_start" or completion.type == "content_block_start":
+ continue
+ elif completion.type == "message_stop" or completion.type == "content_block_stop" or completion.type == "message_delta":
+ break
+ result += completion.delta.text
+ if not console_slience: print(completion.delta.text, end='')
+ if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
- if len(observe_window) >= 1: observe_window[0] += completion.completion
+ if len(observe_window) >= 1: observe_window[0] += completion.delta.text
# 看门狗,如果超过期限没有喂狗,则终止
- if len(observe_window) >= 2:
+ if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("用户取消了程序。")
except Exception as e:
@@ -98,6 +103,10 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
return result
+def make_media_input(history,inputs,image_paths):
+ for image_path in image_paths:
+ inputs = inputs + f'
})
'
+ return inputs
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
@@ -109,23 +118,34 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
additional_fn代表点击的哪个按钮,按钮见functional.py
"""
+ if inputs == "": inputs = "空空如也的输入栏"
from anthropic import Anthropic
if len(ANTHROPIC_API_KEY) == 0:
chatbot.append((inputs, "没有设置ANTHROPIC_API_KEY"))
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
return
-
+
if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
- raw_input = inputs
- logging.info(f'[raw_input] {raw_input}')
- chatbot.append((inputs, ""))
- yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
+ have_recent_file, image_paths = every_image_file_in_path(chatbot)
+ if len(image_paths) > 20:
+ chatbot.append((inputs, "图片数量超过api上限(20张)"))
+ yield from update_ui(chatbot=chatbot, history=history, msg="等待响应")
+ return
+
+ if any([llm_kwargs['llm_model'] == model for model in Claude_3_Models]) and have_recent_file:
+ if inputs == "" or inputs == "空空如也的输入栏": inputs = "请描述给出的图片"
+ system_prompt += picture_system_prompt # 由于没有单独的参数保存包含图片的历史,所以只能通过提示词对第几张图片进行定位
+ chatbot.append((make_media_input(history,inputs, image_paths), ""))
+ yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
+ else:
+ chatbot.append((inputs, ""))
+ yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
try:
- prompt = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
+ message = generate_payload(inputs, llm_kwargs, history, stream, image_paths)
except RuntimeError as e:
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
@@ -138,17 +158,17 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
try:
# make a POST request to the API endpoint, stream=True
from .bridge_all import model_info
- anthropic = Anthropic(api_key=ANTHROPIC_API_KEY)
+ anthropic = Anthropic(api_key=ANTHROPIC_API_KEY, base_url=model_info[llm_kwargs['llm_model']]['endpoint'])
# endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
# with ProxyNetworkActivate()
- stream = anthropic.completions.create(
- prompt=prompt,
- max_tokens_to_sample=4096, # The maximum number of tokens to generate before stopping.
+ stream = anthropic.messages.create(
+ messages=message,
+ max_tokens=4096, # The maximum number of tokens to generate before stopping.
model=llm_kwargs['llm_model'],
stream=True,
- temperature = llm_kwargs['temperature']
+ temperature = llm_kwargs['temperature'],
+ system=system_prompt
)
-
break
except:
retry += 1
@@ -158,10 +178,14 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
if retry > MAX_RETRY: raise TimeoutError
gpt_replying_buffer = ""
-
+
for completion in stream:
+ if completion.type == "message_start" or completion.type == "content_block_start":
+ continue
+ elif completion.type == "message_stop" or completion.type == "content_block_stop" or completion.type == "message_delta":
+ break
try:
- gpt_replying_buffer = gpt_replying_buffer + completion.completion
+ gpt_replying_buffer = gpt_replying_buffer + completion.delta.text
history[-1] = gpt_replying_buffer
chatbot[-1] = (history[-2], history[-1])
yield from update_ui(chatbot=chatbot, history=history, msg='正常') # 刷新界面
@@ -172,57 +196,52 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str}")
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + tb_str) # 刷新界面
return
-
-
-
-# https://github.com/jtsang4/claude-to-chatgpt/blob/main/claude_to_chatgpt/adapter.py
-def convert_messages_to_prompt(messages):
- prompt = ""
- role_map = {
- "system": "Human",
- "user": "Human",
- "assistant": "Assistant",
- }
- for message in messages:
- role = message["role"]
- content = message["content"]
- transformed_role = role_map[role]
- prompt += f"\n\n{transformed_role.capitalize()}: {content}"
- prompt += "\n\nAssistant: "
- return prompt
-
-def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
+def generate_payload(inputs, llm_kwargs, history, stream, image_paths):
"""
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
"""
- from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
conversation_cnt = len(history) // 2
- messages = [{"role": "system", "content": system_prompt}]
+ messages = []
+
if conversation_cnt:
for index in range(0, 2*conversation_cnt, 2):
what_i_have_asked = {}
what_i_have_asked["role"] = "user"
- what_i_have_asked["content"] = history[index]
+ what_i_have_asked["content"] = [{"type": "text", "text": history[index]}]
what_gpt_answer = {}
what_gpt_answer["role"] = "assistant"
- what_gpt_answer["content"] = history[index+1]
- if what_i_have_asked["content"] != "":
- if what_gpt_answer["content"] == "": continue
- if what_gpt_answer["content"] == timeout_bot_msg: continue
+ what_gpt_answer["content"] = [{"type": "text", "text": history[index+1]}]
+ if what_i_have_asked["content"][0]["text"] != "":
+ if what_i_have_asked["content"][0]["text"] == "": continue
+ if what_i_have_asked["content"][0]["text"] == timeout_bot_msg: continue
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
else:
- messages[-1]['content'] = what_gpt_answer['content']
+ messages[-1]['content'][0]['text'] = what_gpt_answer['content'][0]['text']
- what_i_ask_now = {}
- what_i_ask_now["role"] = "user"
- what_i_ask_now["content"] = inputs
+ if any([llm_kwargs['llm_model'] == model for model in Claude_3_Models]) and image_paths:
+ base64_images = []
+ for image_path in image_paths:
+ base64_images.append(encode_image(image_path))
+ what_i_ask_now = {}
+ what_i_ask_now["role"] = "user"
+ what_i_ask_now["content"] = []
+ for base64_image in base64_images:
+ what_i_ask_now["content"].append({
+ "type": "image",
+ "source": {
+ "type": "base64",
+ "media_type": "image/jpeg",
+ "data": base64_image,
+ }
+ })
+ what_i_ask_now["content"].append({"type": "text", "text": inputs})
+ else:
+ what_i_ask_now = {}
+ what_i_ask_now["role"] = "user"
+ what_i_ask_now["content"] = [{"type": "text", "text": inputs}]
messages.append(what_i_ask_now)
- prompt = convert_messages_to_prompt(messages)
-
- return prompt
-
-
+ return messages
\ No newline at end of file
diff --git a/request_llms/bridge_deepseekcoder.py b/request_llms/bridge_deepseekcoder.py
index 89964ab..f8e62e6 100644
--- a/request_llms/bridge_deepseekcoder.py
+++ b/request_llms/bridge_deepseekcoder.py
@@ -88,7 +88,7 @@ class GetCoderLMHandle(LocalLLMHandle):
temperature = kwargs['temperature']
history = kwargs['history']
return query, max_length, top_p, temperature, history
-
+
query, max_length, top_p, temperature, history = adaptor(kwargs)
history.append({ 'role': 'user', 'content': query})
messages = history
@@ -97,14 +97,14 @@ class GetCoderLMHandle(LocalLLMHandle):
inputs = inputs[:, -max_length:]
inputs = inputs.to(self._model.device)
generation_kwargs = dict(
- inputs=inputs,
+ inputs=inputs,
max_new_tokens=max_length,
do_sample=False,
top_p=top_p,
streamer = self._streamer,
top_k=50,
temperature=temperature,
- num_return_sequences=1,
+ num_return_sequences=1,
eos_token_id=32021,
)
thread = Thread(target=self._model.generate, kwargs=generation_kwargs, daemon=True)
diff --git a/request_llms/bridge_google_gemini.py b/request_llms/bridge_google_gemini.py
index cb85ecb..5cf3be9 100644
--- a/request_llms/bridge_google_gemini.py
+++ b/request_llms/bridge_google_gemini.py
@@ -20,7 +20,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
if get_conf("GEMINI_API_KEY") == "":
raise ValueError(f"请配置 GEMINI_API_KEY。")
- genai = GoogleChatInit()
+ genai = GoogleChatInit(llm_kwargs)
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
gpt_replying_buffer = ''
stream_response = genai.generate_chat(inputs, llm_kwargs, history, sys_prompt)
@@ -61,7 +61,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
chatbot.append((inputs, "没有检测到任何近期上传的图像文件,请上传jpg格式的图片,此外,请注意拓展名需要小写"))
yield from update_ui(chatbot=chatbot, history=history, msg="等待图片") # 刷新界面
return
- def make_media_input(inputs, image_paths):
+ def make_media_input(inputs, image_paths):
for image_path in image_paths:
inputs = inputs + f'
})
'
return inputs
@@ -70,7 +70,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
chatbot.append((inputs, ""))
yield from update_ui(chatbot=chatbot, history=history)
- genai = GoogleChatInit()
+ genai = GoogleChatInit(llm_kwargs)
retry = 0
while True:
try:
diff --git a/request_llms/bridge_internlm.py b/request_llms/bridge_internlm.py
index b2be36a..fb4437a 100644
--- a/request_llms/bridge_internlm.py
+++ b/request_llms/bridge_internlm.py
@@ -82,7 +82,7 @@ class GetInternlmHandle(LocalLLMHandle):
history = kwargs['history']
real_prompt = combine_history(prompt, history)
return model, tokenizer, real_prompt, max_length, top_p, temperature
-
+
model, tokenizer, prompt, max_length, top_p, temperature = adaptor()
prefix_allowed_tokens_fn = None
logits_processor = None
@@ -183,7 +183,7 @@ class GetInternlmHandle(LocalLLMHandle):
outputs, model_kwargs, is_encoder_decoder=False
)
unfinished_sequences = unfinished_sequences.mul((min(next_tokens != i for i in eos_token_id)).long())
-
+
output_token_ids = input_ids[0].cpu().tolist()
output_token_ids = output_token_ids[input_length:]
for each_eos_token_id in eos_token_id:
@@ -196,7 +196,7 @@ class GetInternlmHandle(LocalLLMHandle):
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
return
-
+
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 GPT-Academic Interface
# ------------------------------------------------------------------------------------------------------------------------
diff --git a/request_llms/bridge_jittorllms_llama.py b/request_llms/bridge_jittorllms_llama.py
index 2d3005e..25dbb42 100644
--- a/request_llms/bridge_jittorllms_llama.py
+++ b/request_llms/bridge_jittorllms_llama.py
@@ -20,7 +20,7 @@ class GetGLMHandle(Process):
self.check_dependency()
self.start()
self.threadLock = threading.Lock()
-
+
def check_dependency(self):
try:
import pandas
@@ -102,7 +102,7 @@ class GetGLMHandle(Process):
else:
break
self.threadLock.release()
-
+
global llama_glm_handle
llama_glm_handle = None
#################################################################################
@@ -115,7 +115,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
if llama_glm_handle is None:
llama_glm_handle = GetGLMHandle()
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + llama_glm_handle.info
- if not llama_glm_handle.success:
+ if not llama_glm_handle.success:
error = llama_glm_handle.info
llama_glm_handle = None
raise RuntimeError(error)
@@ -130,7 +130,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
for response in llama_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
print(response)
if len(observe_window) >= 1: observe_window[0] = response
- if len(observe_window) >= 2:
+ if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("程序终止。")
return response
@@ -149,7 +149,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
llama_glm_handle = GetGLMHandle()
chatbot[-1] = (inputs, load_message + "\n\n" + llama_glm_handle.info)
yield from update_ui(chatbot=chatbot, history=[])
- if not llama_glm_handle.success:
+ if not llama_glm_handle.success:
llama_glm_handle = None
return
diff --git a/request_llms/bridge_jittorllms_pangualpha.py b/request_llms/bridge_jittorllms_pangualpha.py
index 2640176..2681157 100644
--- a/request_llms/bridge_jittorllms_pangualpha.py
+++ b/request_llms/bridge_jittorllms_pangualpha.py
@@ -20,7 +20,7 @@ class GetGLMHandle(Process):
self.check_dependency()
self.start()
self.threadLock = threading.Lock()
-
+
def check_dependency(self):
try:
import pandas
@@ -102,7 +102,7 @@ class GetGLMHandle(Process):
else:
break
self.threadLock.release()
-
+
global pangu_glm_handle
pangu_glm_handle = None
#################################################################################
@@ -115,7 +115,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
if pangu_glm_handle is None:
pangu_glm_handle = GetGLMHandle()
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + pangu_glm_handle.info
- if not pangu_glm_handle.success:
+ if not pangu_glm_handle.success:
error = pangu_glm_handle.info
pangu_glm_handle = None
raise RuntimeError(error)
@@ -130,7 +130,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
for response in pangu_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
print(response)
if len(observe_window) >= 1: observe_window[0] = response
- if len(observe_window) >= 2:
+ if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("程序终止。")
return response
@@ -149,7 +149,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
pangu_glm_handle = GetGLMHandle()
chatbot[-1] = (inputs, load_message + "\n\n" + pangu_glm_handle.info)
yield from update_ui(chatbot=chatbot, history=[])
- if not pangu_glm_handle.success:
+ if not pangu_glm_handle.success:
pangu_glm_handle = None
return
diff --git a/request_llms/bridge_jittorllms_rwkv.py b/request_llms/bridge_jittorllms_rwkv.py
index 0021a50..28893d4 100644
--- a/request_llms/bridge_jittorllms_rwkv.py
+++ b/request_llms/bridge_jittorllms_rwkv.py
@@ -20,7 +20,7 @@ class GetGLMHandle(Process):
self.check_dependency()
self.start()
self.threadLock = threading.Lock()
-
+
def check_dependency(self):
try:
import pandas
@@ -102,7 +102,7 @@ class GetGLMHandle(Process):
else:
break
self.threadLock.release()
-
+
global rwkv_glm_handle
rwkv_glm_handle = None
#################################################################################
@@ -115,7 +115,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
if rwkv_glm_handle is None:
rwkv_glm_handle = GetGLMHandle()
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + rwkv_glm_handle.info
- if not rwkv_glm_handle.success:
+ if not rwkv_glm_handle.success:
error = rwkv_glm_handle.info
rwkv_glm_handle = None
raise RuntimeError(error)
@@ -130,7 +130,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
for response in rwkv_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
print(response)
if len(observe_window) >= 1: observe_window[0] = response
- if len(observe_window) >= 2:
+ if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("程序终止。")
return response
@@ -149,7 +149,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
rwkv_glm_handle = GetGLMHandle()
chatbot[-1] = (inputs, load_message + "\n\n" + rwkv_glm_handle.info)
yield from update_ui(chatbot=chatbot, history=[])
- if not rwkv_glm_handle.success:
+ if not rwkv_glm_handle.success:
rwkv_glm_handle = None
return
diff --git a/request_llms/bridge_llama2.py b/request_llms/bridge_llama2.py
index bfa3c14..ba92b21 100644
--- a/request_llms/bridge_llama2.py
+++ b/request_llms/bridge_llama2.py
@@ -48,7 +48,7 @@ class GetLlamaHandle(LocalLLMHandle):
history = kwargs['history']
console_slience = kwargs.get('console_slience', True)
return query, max_length, top_p, temperature, history, console_slience
-
+
def convert_messages_to_prompt(query, history):
prompt = ""
for a, b in history:
@@ -56,7 +56,7 @@ class GetLlamaHandle(LocalLLMHandle):
prompt += "\n{b}" + b
prompt += f"\n[INST]{query}[/INST]"
return prompt
-
+
query, max_length, top_p, temperature, history, console_slience = adaptor(kwargs)
prompt = convert_messages_to_prompt(query, history)
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-
@@ -70,13 +70,13 @@ class GetLlamaHandle(LocalLLMHandle):
thread = Thread(target=self._model.generate, kwargs=generation_kwargs)
thread.start()
generated_text = ""
- for new_text in streamer:
+ for new_text in streamer:
generated_text += new_text
if not console_slience: print(new_text, end='')
yield generated_text.lstrip(prompt_tk_back).rstrip("")
if not console_slience: print()
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-
-
+
def try_to_import_special_deps(self, **kwargs):
# import something that will raise error if the user does not install requirement_*.txt
# 🏃♂️🏃♂️🏃♂️ 主进程执行
diff --git a/request_llms/bridge_moss.py b/request_llms/bridge_moss.py
index ee8907c..967f723 100644
--- a/request_llms/bridge_moss.py
+++ b/request_llms/bridge_moss.py
@@ -18,7 +18,7 @@ class GetGLMHandle(Process):
if self.check_dependency():
self.start()
self.threadLock = threading.Lock()
-
+
def check_dependency(self): # 主进程执行
try:
import datasets, os
@@ -54,9 +54,9 @@ class GetGLMHandle(Process):
from models.tokenization_moss import MossTokenizer
parser = argparse.ArgumentParser()
- parser.add_argument("--model_name", default="fnlp/moss-moon-003-sft-int4",
- choices=["fnlp/moss-moon-003-sft",
- "fnlp/moss-moon-003-sft-int8",
+ parser.add_argument("--model_name", default="fnlp/moss-moon-003-sft-int4",
+ choices=["fnlp/moss-moon-003-sft",
+ "fnlp/moss-moon-003-sft-int8",
"fnlp/moss-moon-003-sft-int4"], type=str)
parser.add_argument("--gpu", default="0", type=str)
args = parser.parse_args()
@@ -76,7 +76,7 @@ class GetGLMHandle(Process):
config = MossConfig.from_pretrained(model_path)
self.tokenizer = MossTokenizer.from_pretrained(model_path)
- if num_gpus > 1:
+ if num_gpus > 1:
print("Waiting for all devices to be ready, it may take a few minutes...")
with init_empty_weights():
raw_model = MossForCausalLM._from_config(config, torch_dtype=torch.float16)
@@ -135,15 +135,15 @@ class GetGLMHandle(Process):
inputs = self.tokenizer(self.prompt, return_tensors="pt")
with torch.no_grad():
outputs = self.model.generate(
- inputs.input_ids.cuda(),
- attention_mask=inputs.attention_mask.cuda(),
- max_length=2048,
- do_sample=True,
- top_k=40,
- top_p=0.8,
+ inputs.input_ids.cuda(),
+ attention_mask=inputs.attention_mask.cuda(),
+ max_length=2048,
+ do_sample=True,
+ top_k=40,
+ top_p=0.8,
temperature=0.7,
repetition_penalty=1.02,
- num_return_sequences=1,
+ num_return_sequences=1,
eos_token_id=106068,
pad_token_id=self.tokenizer.pad_token_id)
response = self.tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
@@ -167,7 +167,7 @@ class GetGLMHandle(Process):
else:
break
self.threadLock.release()
-
+
global moss_handle
moss_handle = None
#################################################################################
@@ -180,7 +180,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
if moss_handle is None:
moss_handle = GetGLMHandle()
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + moss_handle.info
- if not moss_handle.success:
+ if not moss_handle.success:
error = moss_handle.info
moss_handle = None
raise RuntimeError(error)
@@ -194,7 +194,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
response = ""
for response in moss_handle.stream_chat(query=inputs, history=history_feedin, sys_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
if len(observe_window) >= 1: observe_window[0] = response
- if len(observe_window) >= 2:
+ if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("程序终止。")
return response
@@ -213,7 +213,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
moss_handle = GetGLMHandle()
chatbot[-1] = (inputs, load_message + "\n\n" + moss_handle.info)
yield from update_ui(chatbot=chatbot, history=[])
- if not moss_handle.success:
+ if not moss_handle.success:
moss_handle = None
return
else:
diff --git a/request_llms/bridge_qwen_local.py b/request_llms/bridge_qwen_local.py
index e6c2dd5..f68493c 100644
--- a/request_llms/bridge_qwen_local.py
+++ b/request_llms/bridge_qwen_local.py
@@ -45,7 +45,7 @@ class GetQwenLMHandle(LocalLLMHandle):
for response in self._model.chat_stream(self._tokenizer, query, history=history):
yield response
-
+
def try_to_import_special_deps(self, **kwargs):
# import something that will raise error if the user does not install requirement_*.txt
# 🏃♂️🏃♂️🏃♂️ 主进程执行
diff --git a/request_llms/bridge_tgui.py b/request_llms/bridge_tgui.py
index 3e03f7b..8a16f1b 100644
--- a/request_llms/bridge_tgui.py
+++ b/request_llms/bridge_tgui.py
@@ -76,7 +76,7 @@ async def run(context, max_token, temperature, top_p, addr, port):
pass
elif content["msg"] in ["process_generating", "process_completed"]:
yield content["output"]["data"][0]
- # You can search for your desired end indicator and
+ # You can search for your desired end indicator and
# stop generation by closing the websocket here
if (content["msg"] == "process_completed"):
break
@@ -117,12 +117,12 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
async def get_result(mutable):
# "tgui:galactica-1.3b@localhost:7860"
- async for response in run(context=prompt, max_token=llm_kwargs['max_length'],
- temperature=llm_kwargs['temperature'],
+ async for response in run(context=prompt, max_token=llm_kwargs['max_length'],
+ temperature=llm_kwargs['temperature'],
top_p=llm_kwargs['top_p'], addr=addr, port=port):
print(response[len(mutable[0]):])
mutable[0] = response
- if (time.time() - mutable[1]) > 3:
+ if (time.time() - mutable[1]) > 3:
print('exit when no listener')
break
asyncio.run(get_result(mutable))
@@ -154,12 +154,12 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
def run_coorotine(observe_window):
async def get_result(observe_window):
- async for response in run(context=prompt, max_token=llm_kwargs['max_length'],
- temperature=llm_kwargs['temperature'],
+ async for response in run(context=prompt, max_token=llm_kwargs['max_length'],
+ temperature=llm_kwargs['temperature'],
top_p=llm_kwargs['top_p'], addr=addr, port=port):
print(response[len(observe_window[0]):])
observe_window[0] = response
- if (time.time() - observe_window[1]) > 5:
+ if (time.time() - observe_window[1]) > 5:
print('exit when no listener')
break
asyncio.run(get_result(observe_window))
diff --git a/request_llms/chatglmoonx.py b/request_llms/chatglmoonx.py
index 444181e..dbb83c9 100644
--- a/request_llms/chatglmoonx.py
+++ b/request_llms/chatglmoonx.py
@@ -119,7 +119,7 @@ class ChatGLMModel():
past_key_values = { k: v for k, v in zip(past_names, past_key_values) }
next_token = self.sample_next_token(logits[0, -1], top_k=top_k, top_p=top_p, temperature=temperature)
-
+
output_tokens += [next_token]
if next_token == self.eop_token_id or len(output_tokens) > max_generated_tokens:
diff --git a/request_llms/com_google.py b/request_llms/com_google.py
index e66d659..75f6b53 100644
--- a/request_llms/com_google.py
+++ b/request_llms/com_google.py
@@ -114,8 +114,10 @@ def html_local_img(__file, layout="left", max_width=None, max_height=None, md=Tr
class GoogleChatInit:
- def __init__(self):
- self.url_gemini = "https://generativelanguage.googleapis.com/v1beta/models/%m:streamGenerateContent?key=%k"
+ def __init__(self, llm_kwargs):
+ from .bridge_all import model_info
+ endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
+ self.url_gemini = endpoint + "/%m:streamGenerateContent?key=%k"
def generate_chat(self, inputs, llm_kwargs, history, system_prompt):
headers, payload = self.generate_message_payload(
diff --git a/request_llms/com_zhipuglm.py b/request_llms/com_zhipuglm.py
index 2e96d3f..1127431 100644
--- a/request_llms/com_zhipuglm.py
+++ b/request_llms/com_zhipuglm.py
@@ -8,7 +8,7 @@ from toolbox import get_conf, encode_image, get_pictures_list
import logging, os
-def input_encode_handler(inputs, llm_kwargs):
+def input_encode_handler(inputs, llm_kwargs):
if llm_kwargs["most_recent_uploaded"].get("path"):
image_paths = get_pictures_list(llm_kwargs["most_recent_uploaded"]["path"])
md_encode = []
diff --git a/request_llms/key_manager.py b/request_llms/key_manager.py
index 8563d2e..d2c33f6 100644
--- a/request_llms/key_manager.py
+++ b/request_llms/key_manager.py
@@ -2,12 +2,12 @@ import random
def Singleton(cls):
_instance = {}
-
+
def _singleton(*args, **kargs):
if cls not in _instance:
_instance[cls] = cls(*args, **kargs)
return _instance[cls]
-
+
return _singleton
@@ -16,7 +16,7 @@ class OpenAI_ApiKeyManager():
def __init__(self, mode='blacklist') -> None:
# self.key_avail_list = []
self.key_black_list = []
-
+
def add_key_to_blacklist(self, key):
self.key_black_list.append(key)
diff --git a/request_llms/local_llm_class.py b/request_llms/local_llm_class.py
index ec7cfd2..47af9e3 100644
--- a/request_llms/local_llm_class.py
+++ b/request_llms/local_llm_class.py
@@ -90,7 +90,7 @@ class LocalLLMHandle(Process):
return self.state
def set_state(self, new_state):
- # ⭐run in main process or 🏃♂️🏃♂️🏃♂️ run in child process
+ # ⭐run in main process or 🏃♂️🏃♂️🏃♂️ run in child process
if self.is_main_process:
self.state = new_state
else:
@@ -178,8 +178,8 @@ class LocalLLMHandle(Process):
r = self.parent.recv()
continue
break
- return
-
+ return
+
def stream_chat(self, **kwargs):
# ⭐run in main process
if self.get_state() == "`准备就绪`":
diff --git a/requirements.txt b/requirements.txt
index 007c5a7..d2eced8 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -8,6 +8,7 @@ pydantic==2.5.2
protobuf==3.18
transformers>=4.27.1
scipdf_parser>=0.52
+anthropic>=0.18.1
python-markdown-math
pymdown-extensions
websocket-client
@@ -16,7 +17,6 @@ prompt_toolkit
latex2mathml
python-docx
mdtex2html
-anthropic
pyautogen
colorama
Markdown
diff --git a/shared_utils/key_pattern_manager.py b/shared_utils/key_pattern_manager.py
index a617b7f..6f919f8 100644
--- a/shared_utils/key_pattern_manager.py
+++ b/shared_utils/key_pattern_manager.py
@@ -62,7 +62,7 @@ def select_api_key(keys, llm_model):
avail_key_list = []
key_list = keys.split(',')
- if llm_model.startswith('gpt-'):
+ if llm_model.startswith('gpt-') or llm_model.startswith('one-api-'):
for k in key_list:
if is_openai_api_key(k): avail_key_list.append(k)
diff --git a/shared_utils/map_names.py b/shared_utils/map_names.py
new file mode 100644
index 0000000..23ce66b
--- /dev/null
+++ b/shared_utils/map_names.py
@@ -0,0 +1,34 @@
+import re
+mapping_dic = {
+ # "qianfan": "qianfan(文心一言大模型)",
+ # "zhipuai": "zhipuai(智谱GLM4超级模型🔥)",
+ # "gpt-4-1106-preview": "gpt-4-1106-preview(新调优版本GPT-4🔥)",
+ # "gpt-4-vision-preview": "gpt-4-vision-preview(识图模型GPT-4V)",
+}
+
+rev_mapping_dic = {}
+for k, v in mapping_dic.items():
+ rev_mapping_dic[v] = k
+
+def map_model_to_friendly_names(m):
+ if m in mapping_dic:
+ return mapping_dic[m]
+ return m
+
+def map_friendly_names_to_model(m):
+ if m in rev_mapping_dic:
+ return rev_mapping_dic[m]
+ return m
+
+def read_one_api_model_name(model: str):
+ """return real model name and max_token.
+ """
+ max_token_pattern = r"\(max_token=(\d+)\)"
+ match = re.search(max_token_pattern, model)
+ if match:
+ max_token_tmp = match.group(1) # 获取 max_token 的值
+ max_token_tmp = int(max_token_tmp)
+ model = re.sub(max_token_pattern, "", model) # 从原字符串中删除 "(max_token=...)"
+ else:
+ max_token_tmp = 4096
+ return model, max_token_tmp
\ No newline at end of file
diff --git a/shared_utils/text_mask.py b/shared_utils/text_mask.py
index d57fb1c..4ecb130 100644
--- a/shared_utils/text_mask.py
+++ b/shared_utils/text_mask.py
@@ -59,7 +59,7 @@ def apply_gpt_academic_string_mask_langbased(string, lang_reference):
lang_reference = "hello world"
输出1
"注意,lang_reference这段文字是:英语"
-
+
输入2
string = "注意,lang_reference这段文字是中文" # 注意这里没有掩码tag,所以不会被处理
lang_reference = "hello world"
diff --git a/toolbox.py b/toolbox.py
index 77ceaec..b45fe7e 100644
--- a/toolbox.py
+++ b/toolbox.py
@@ -25,6 +25,9 @@ from shared_utils.text_mask import apply_gpt_academic_string_mask
from shared_utils.text_mask import build_gpt_academic_masked_string
from shared_utils.text_mask import apply_gpt_academic_string_mask_langbased
from shared_utils.text_mask import build_gpt_academic_masked_string_langbased
+from shared_utils.map_names import map_friendly_names_to_model
+from shared_utils.map_names import map_model_to_friendly_names
+from shared_utils.map_names import read_one_api_model_name
from shared_utils.handle_upload import html_local_file
from shared_utils.handle_upload import html_local_img
from shared_utils.handle_upload import file_manifest_filter_type
@@ -919,6 +922,18 @@ def have_any_recent_upload_image_files(chatbot):
else:
return False, None # most_recent_uploaded is too old
+# Claude3 model supports graphic context dialogue, reads all images
+def every_image_file_in_path(chatbot):
+ if chatbot is None:
+ return False, [] # chatbot is None
+ most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
+ if not most_recent_uploaded:
+ return False, [] # most_recent_uploaded is None
+ path = most_recent_uploaded["path"]
+ file_manifest = get_pictures_list(path)
+ if len(file_manifest) == 0:
+ return False, []
+ return True, file_manifest
# Function to encode the image
def encode_image(image_path):
@@ -939,3 +954,53 @@ def check_packages(packages=[]):
spam_spec = importlib.util.find_spec(p)
if spam_spec is None:
raise ModuleNotFoundError
+
+
+def map_file_to_sha256(file_path):
+ import hashlib
+
+ with open(file_path, 'rb') as file:
+ content = file.read()
+
+ # Calculate the SHA-256 hash of the file contents
+ sha_hash = hashlib.sha256(content).hexdigest()
+
+ return sha_hash
+
+
+def check_repeat_upload(new_pdf_path, pdf_hash):
+ '''
+ 检查历史上传的文件是否与新上传的文件相同,如果相同则返回(True, 重复文件路径),否则返回(False,None)
+ '''
+ from toolbox import get_conf
+ import PyPDF2
+
+ user_upload_dir = os.path.dirname(os.path.dirname(new_pdf_path))
+ file_name = os.path.basename(new_pdf_path)
+
+ file_manifest = [f for f in glob.glob(f'{user_upload_dir}/**/{file_name}', recursive=True)]
+
+ for saved_file in file_manifest:
+ with open(new_pdf_path, 'rb') as file1, open(saved_file, 'rb') as file2:
+ reader1 = PyPDF2.PdfFileReader(file1)
+ reader2 = PyPDF2.PdfFileReader(file2)
+
+ # 比较页数是否相同
+ if reader1.getNumPages() != reader2.getNumPages():
+ continue
+
+ # 比较每一页的内容是否相同
+ for page_num in range(reader1.getNumPages()):
+ page1 = reader1.getPage(page_num).extractText()
+ page2 = reader2.getPage(page_num).extractText()
+ if page1 != page2:
+ continue
+
+ maybe_project_dir = glob.glob('{}/**/{}'.format(get_log_folder(), pdf_hash + ".tag"), recursive=True)
+
+
+ if len(maybe_project_dir) > 0:
+ return True, os.path.dirname(maybe_project_dir[0])
+
+ # 如果所有页的内容都相同,返回 True
+ return False, None
\ No newline at end of file
diff --git a/version b/version
index 0cb5958..ed934e2 100644
--- a/version
+++ b/version
@@ -1,5 +1,5 @@
{
- "version": 3.72,
+ "version": 3.73,
"show_feature": true,
- "new_feature": "支持切换多个智谱ai模型 <-> 用绘图功能增强部分插件 <-> 基础功能区支持自动切换中英提示词 <-> 支持Mermaid绘图库(让大模型绘制脑图) <-> 支持Gemini-pro <-> 支持直接拖拽文件到上传区 <-> 支持将图片粘贴到输入区"
+ "new_feature": "优化oneapi接入方法 <-> 接入月之暗面模型 <-> 支持切换多个智谱ai模型 <-> 用绘图功能增强部分插件 <-> 基础功能区支持自动切换中英提示词 <-> 支持Mermaid绘图库(让大模型绘制脑图)"
}