Merge remote-tracking branch 'origin/master' into multi_language

This commit is contained in:
505030475 2023-05-20 13:36:23 +08:00
commit d29f524cec
16 changed files with 561 additions and 8 deletions

1
.gitignore vendored
View File

@ -148,3 +148,4 @@ crazy_functions/test_project/pdf_and_word
crazy_functions/test_samples
request_llm/jittorllms
multi-language
request_llm/moss

View File

@ -267,6 +267,12 @@ Tip不指定文件直接点击 `载入对话历史存档` 可以查看历史h
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/bc7ab234-ad90-48a0-8d62-f703d9e74665" width="500" >
</div>
9. OpenAI音频解析与总结
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/709ccf95-3aee-498a-934a-e1c22d3d5d5b" width="500" >
</div>
## 版本:
- version 3.5(Todo): 使用自然语言调用本项目的所有函数插件(高优先级)

View File

@ -44,9 +44,10 @@ WEB_PORT = -1
# 如果OpenAI不响应网络卡顿、代理失败、KEY失效重试的次数限制
MAX_RETRY = 2
# OpenAI模型选择是gpt4现在只对申请成功的人开放体验gpt-4可以试试api2d
# 模型选择是
LLM_MODEL = "gpt-3.5-turbo" # 可选 ↓↓↓
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss", "newbing"]
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss", "newbing", "stack-claude"]
# P.S. 其他可用的模型还包括 ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
# 本地LLM模型如ChatGLM的执行方式 CPU/GPU
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
@ -75,3 +76,7 @@ NEWBING_STYLE = "creative" # ["creative", "balanced", "precise"]
NEWBING_COOKIES = """
your bing cookies here
"""
# 如果需要使用Slack Claude使用教程详情见 request_llm/README.md
SLACK_CLAUDE_BOT_ID = ''
SLACK_CLAUDE_USER_TOKEN = ''

View File

@ -68,4 +68,11 @@ def get_core_functions():
"Prefix": r"请解释以下代码:" + "\n```\n",
"Suffix": "\n```\n",
},
"参考文献转Bib": {
"Prefix": r"Here are some bibliography items, please transform them into bibtex style." +
r"Note that, reference styles maybe more than one kind, you should transform each item correctly." +
r"Items need to be transformed:",
"Suffix": r"",
"Visible": False,
}
}

View File

@ -246,5 +246,15 @@ def get_crazy_functions():
"Function": HotReload(图片生成)
},
})
from crazy_functions.总结音视频 import 总结音视频
function_plugins.update({
"批量总结音视频(输入路径或上传压缩包)": {
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
"ArgsReminder": "调用openai api 使用whisper-1模型, 目前支持的格式:mp4, m4a, wav, mpga, mpeg, mp3。此处可以输入解析提示例如解析为简体中文默认",
"Function": HotReload(总结音视频)
}
})
###################### 第n组插件 ###########################
return function_plugins

View File

@ -55,6 +55,7 @@ def 图片生成(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
history = [] # 清空历史,以免输入溢出
chatbot.append(("这是什么功能?", "[Local Message] 生成图像, 请先把模型切换至gpt-xxxx或者api2d-xxxx。如果中文效果不理想, 尝试Prompt。正在处理中 ....."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间我们先及时地做一次界面更新
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
resolution = plugin_kwargs.get("advanced_arg", '256x256')
image_url, image_path = gen_image(llm_kwargs, prompt, resolution)
chatbot.append([prompt,

View File

@ -0,0 +1,184 @@
from toolbox import CatchException, report_execption, select_api_key, update_ui, write_results_to_file, get_conf
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
def split_audio_file(filename, split_duration=1000):
"""
根据给定的切割时长将音频文件切割成多个片段
Args:
filename (str): 需要被切割的音频文件名
split_duration (int, optional): 每个切割音频片段的时长以秒为单位默认值为1000
Returns:
filelist (list): 一个包含所有切割音频片段文件路径的列表
"""
from moviepy.editor import AudioFileClip
import os
os.makedirs('gpt_log/mp3/cut/', exist_ok=True) # 创建存储切割音频的文件夹
# 读取音频文件
audio = AudioFileClip(filename)
# 计算文件总时长和切割点
total_duration = audio.duration
split_points = list(range(0, int(total_duration), split_duration))
split_points.append(int(total_duration))
filelist = []
# 切割音频文件
for i in range(len(split_points) - 1):
start_time = split_points[i]
end_time = split_points[i + 1]
split_audio = audio.subclip(start_time, end_time)
split_audio.write_audiofile(f"gpt_log/mp3/cut/{filename[0]}_{i}.mp3")
filelist.append(f"gpt_log/mp3/cut/{filename[0]}_{i}.mp3")
audio.close()
return filelist
def AnalyAudio(parse_prompt, file_manifest, llm_kwargs, chatbot, history):
import os, requests
from moviepy.editor import AudioFileClip
from request_llm.bridge_all import model_info
# 设置OpenAI密钥和模型
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
chat_endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
whisper_endpoint = chat_endpoint.replace('chat/completions', 'audio/transcriptions')
url = whisper_endpoint
headers = {
'Authorization': f"Bearer {api_key}"
}
os.makedirs('gpt_log/mp3/', exist_ok=True)
for index, fp in enumerate(file_manifest):
audio_history = []
# 提取文件扩展名
ext = os.path.splitext(fp)[1]
# 提取视频中的音频
if ext not in [".mp3", ".wav", ".m4a", ".mpga"]:
audio_clip = AudioFileClip(fp)
audio_clip.write_audiofile(f'gpt_log/mp3/output{index}.mp3')
fp = f'gpt_log/mp3/output{index}.mp3'
# 调用whisper模型音频转文字
voice = split_audio_file(fp)
for j, i in enumerate(voice):
with open(i, 'rb') as f:
file_content = f.read() # 读取文件内容到内存
files = {
'file': (os.path.basename(i), file_content),
}
data = {
"model": "whisper-1",
"prompt": parse_prompt,
'response_format': "text"
}
chatbot.append([f"{i} 发送到openai音频解析终端 (whisper),当前参数:{parse_prompt}", "正在处理 ..."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
proxies, = get_conf('proxies')
response = requests.post(url, headers=headers, files=files, data=data, proxies=proxies).text
chatbot.append(["音频解析结果", response])
history.extend(["音频解析结果", response])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
i_say = f'请对下面的音频片段做概述,音频内容是 ```{response}```'
i_say_show_user = f'{index + 1}段音频的第{j + 1} / {len(voice)}片段。'
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say_show_user,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=[],
sys_prompt=f"总结音频。音频文件名{fp}"
)
chatbot[-1] = (i_say_show_user, gpt_say)
history.extend([i_say_show_user, gpt_say])
audio_history.extend([i_say_show_user, gpt_say])
# 已经对该文章的所有片段总结完毕,如果文章被切分了
result = "".join(audio_history)
if len(audio_history) > 1:
i_say = f"根据以上的对话,使用中文总结音频“{result}”的主要内容。"
i_say_show_user = f'{index + 1}段音频的主要内容:'
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say_show_user,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=audio_history,
sys_prompt="总结文章。"
)
history.extend([i_say, gpt_say])
audio_history.extend([i_say, gpt_say])
res = write_results_to_file(history)
chatbot.append((f"{index + 1}段音频完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 删除中间文件夹
import shutil
shutil.rmtree('gpt_log/mp3')
res = write_results_to_file(history)
chatbot.append(("所有音频都总结完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history)
@CatchException
def 总结音视频(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, WEB_PORT):
import glob, os
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"总结音视频内容,函数插件贡献者: dalvqw & BinaryHusky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
try:
from moviepy.editor import AudioFileClip
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade moviepy```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 清空历史,以免输入溢出
history = []
# 检测输入参数,如没有给定输入参数,直接退出
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 搜索需要处理的文件清单
extensions = ['.mp4', '.m4a', '.wav', '.mpga', '.mpeg', '.mp3', '.avi', '.mkv', '.flac', '.aac']
if txt.endswith(tuple(extensions)):
file_manifest = [txt]
else:
file_manifest = []
for extension in extensions:
file_manifest.extend(glob.glob(f'{project_folder}/**/*{extension}', recursive=True))
# 如果没找到任何文件
if len(file_manifest) == 0:
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何音频或视频文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 开始正式执行任务
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
parse_prompt = plugin_kwargs.get("advanced_arg", '将音频解析为简体中文')
yield from AnalyAudio(parse_prompt, file_manifest, llm_kwargs, chatbot, history)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

View File

@ -67,6 +67,7 @@ def parseNotebook(filename, enable_markdown=1):
def ipynb解释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
enable_markdown = plugin_kwargs.get("advanced_arg", "1")
try:
enable_markdown = int(enable_markdown)

View File

@ -45,6 +45,7 @@ def 同时问询_指定模型(txt, llm_kwargs, plugin_kwargs, chatbot, history,
chatbot.append((txt, "正在同时咨询ChatGPT和ChatGLM……"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间我们先及时地做一次界面更新
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
# llm_kwargs['llm_model'] = 'chatglm&gpt-3.5-turbo&api2d-gpt-3.5-turbo' # 支持任意数量的llm接口用&符号分隔
llm_kwargs['llm_model'] = plugin_kwargs.get("advanced_arg", 'chatglm&gpt-3.5-turbo') # 'chatglm&gpt-3.5-turbo' # 支持任意数量的llm接口用&符号分隔
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(

View File

@ -74,6 +74,7 @@ def main():
with gr.Accordion("基础功能区", open=True) as area_basic_fn:
with gr.Row():
for k in functional:
if ("Visible" in functional[k]) and (not functional[k]["Visible"]): continue
variant = functional[k]["Color"] if "Color" in functional[k] else "secondary"
functional[k]["Button"] = gr.Button(k, variant=variant)
with gr.Accordion("函数插件区", open=True) as area_crazy_fn:
@ -144,6 +145,7 @@ def main():
clearBtn2.click(lambda: ("",""), None, [txt, txt2])
# 基础功能区的回调函数注册
for k in functional:
if ("Visible" in functional[k]) and (not functional[k]["Visible"]): continue
click_handle = functional[k]["Button"].click(fn=ArgsGeneralWrapper(predict), inputs=[*input_combo, gr.State(True), gr.State(k)], outputs=output_combo)
cancel_handles.append(click_handle)
# 文件上传区接收文件后与chatbot的互动

View File

@ -13,6 +13,31 @@ LLM_MODEL = "chatglm"
`python main.py`
```
## Claude-Stack
- 请参考此教程获取 https://zhuanlan.zhihu.com/p/627485689
- 1、SLACK_CLAUDE_BOT_ID
- 2、SLACK_CLAUDE_USER_TOKEN
- 把token加入config.py
## Newbing
- 使用cookie editor获取cookiejson
- 把cookiejson加入config.py NEWBING_COOKIES
## Moss
- 使用docker-compose
## RWKV
- 使用docker-compose
## LLAMA
- 使用docker-compose
## 盘古
- 使用docker-compose
---
## Text-Generation-UI (TGUI调试中暂不可用)

View File

@ -130,6 +130,7 @@ model_info = {
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
}
@ -186,8 +187,20 @@ if "moss" in AVAIL_LLM_MODELS:
"token_cnt": get_token_num_gpt35,
},
})
if "stack-claude" in AVAIL_LLM_MODELS:
from .bridge_stackclaude import predict_no_ui_long_connection as claude_noui
from .bridge_stackclaude import predict as claude_ui
# claude
model_info.update({
"stack-claude": {
"fn_with_ui": claude_ui,
"fn_without_ui": claude_noui,
"endpoint": None,
"max_token": 8192,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
}
})
def LLM_CATCH_EXCEPTION(f):

View File

@ -153,7 +153,7 @@ class NewBingHandle(Process):
# 进入任务等待状态
asyncio.run(self.async_run())
except Exception:
tb_str = '```\n' + trimmed_format_exc() + '```'
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
self.child.send(f'[Local Message] Newbing失败 {tb_str}.')
self.child.send('[Fail]')
self.child.send('[Finish]')

View File

@ -0,0 +1,296 @@
from .bridge_newbing import preprocess_newbing_out, preprocess_newbing_out_simple
from multiprocessing import Process, Pipe
from toolbox import update_ui, get_conf, trimmed_format_exc
import threading
import importlib
import logging
import time
from toolbox import get_conf
import asyncio
load_message = "正在加载Claude组件请稍候..."
try:
"""
========================================================================
第一部分Slack API Client
https://github.com/yokonsan/claude-in-slack-api
========================================================================
"""
from slack_sdk.errors import SlackApiError
from slack_sdk.web.async_client import AsyncWebClient
class SlackClient(AsyncWebClient):
"""SlackClient类用于与Slack API进行交互实现消息发送、接收等功能。
属性
- CHANNEL_IDstr类型表示频道ID
方法
- open_channel()异步方法通过调用conversations_open方法打开一个频道并将返回的频道ID保存在属性CHANNEL_ID中
- chat(text: str)异步方法向已打开的频道发送一条文本消息
- get_slack_messages()异步方法获取已打开频道的最新消息并返回消息列表目前不支持历史消息查询
- get_reply()异步方法循环监听已打开频道的消息如果收到"Typing…_"结尾的消息说明Claude还在继续输出否则结束循环
"""
CHANNEL_ID = None
async def open_channel(self):
response = await self.conversations_open(users=get_conf('SLACK_CLAUDE_BOT_ID')[0])
self.CHANNEL_ID = response["channel"]["id"]
async def chat(self, text):
if not self.CHANNEL_ID:
raise Exception("Channel not found.")
resp = await self.chat_postMessage(channel=self.CHANNEL_ID, text=text)
self.LAST_TS = resp["ts"]
async def get_slack_messages(self):
try:
# TODO暂时不支持历史消息因为在同一个频道里存在多人使用时历史消息渗透问题
resp = await self.conversations_history(channel=self.CHANNEL_ID, oldest=self.LAST_TS, limit=1)
msg = [msg for msg in resp["messages"]
if msg.get("user") == get_conf('SLACK_CLAUDE_BOT_ID')[0]]
return msg
except (SlackApiError, KeyError) as e:
raise RuntimeError(f"获取Slack消息失败。")
async def get_reply(self):
while True:
slack_msgs = await self.get_slack_messages()
if len(slack_msgs) == 0:
await asyncio.sleep(0.5)
continue
msg = slack_msgs[-1]
if msg["text"].endswith("Typing…_"):
yield False, msg["text"]
else:
yield True, msg["text"]
break
except:
pass
"""
========================================================================
第二部分子进程Worker调用主体
========================================================================
"""
class ClaudeHandle(Process):
def __init__(self):
super().__init__(daemon=True)
self.parent, self.child = Pipe()
self.claude_model = None
self.info = ""
self.success = True
self.local_history = []
self.check_dependency()
if self.success:
self.start()
self.threadLock = threading.Lock()
def check_dependency(self):
try:
self.success = False
import slack_sdk
self.info = "依赖检测通过等待Claude响应。注意目前不能多人同时调用Claude接口有线程锁否则将导致每个人的Claude问询历史互相渗透。调用Claude时会自动使用已配置的代理。"
self.success = True
except:
self.info = "缺少的依赖如果要使用Claude除了基础的pip依赖以外您还需要运行`pip install -r request_llm/requirements_slackclaude.txt`安装Claude的依赖然后重启程序。"
self.success = False
def ready(self):
return self.claude_model is not None
async def async_run(self):
await self.claude_model.open_channel()
while True:
# 等待
kwargs = self.child.recv()
question = kwargs['query']
history = kwargs['history']
# system_prompt=kwargs['system_prompt']
# 是否重置
if len(self.local_history) > 0 and len(history) == 0:
# await self.claude_model.reset()
self.local_history = []
# 开始问问题
prompt = ""
# Slack API最好不要添加系统提示
# if system_prompt not in self.local_history:
# self.local_history.append(system_prompt)
# prompt += system_prompt + '\n'
# 追加历史
for ab in history:
a, b = ab
if a not in self.local_history:
self.local_history.append(a)
prompt += a + '\n'
# if b not in self.local_history:
# self.local_history.append(b)
# prompt += b + '\n'
# 问题
prompt += question
self.local_history.append(question)
print('question:', prompt)
# 提交
await self.claude_model.chat(prompt)
# 获取回复
# async for final, response in self.claude_model.get_reply():
# await self.handle_claude_response(final, response)
async for final, response in self.claude_model.get_reply():
if not final:
print(response)
self.child.send(str(response))
else:
# 防止丢失最后一条消息
slack_msgs = await self.claude_model.get_slack_messages()
last_msg = slack_msgs[-1]["text"] if slack_msgs and len(slack_msgs) > 0 else ""
if last_msg:
self.child.send(last_msg)
print('-------- receive final ---------')
self.child.send('[Finish]')
def run(self):
"""
这个函数运行在子进程
"""
# 第一次运行,加载参数
self.success = False
self.local_history = []
if (self.claude_model is None) or (not self.success):
# 代理设置
proxies, = get_conf('proxies')
if proxies is None:
self.proxies_https = None
else:
self.proxies_https = proxies['https']
try:
SLACK_CLAUDE_USER_TOKEN, = get_conf('SLACK_CLAUDE_USER_TOKEN')
self.claude_model = SlackClient(token=SLACK_CLAUDE_USER_TOKEN, proxy=self.proxies_https)
print('Claude组件初始化成功。')
except:
self.success = False
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
self.child.send(f'[Local Message] 不能加载Claude组件。{tb_str}')
self.child.send('[Fail]')
self.child.send('[Finish]')
raise RuntimeError(f"不能加载Claude组件。")
self.success = True
try:
# 进入任务等待状态
asyncio.run(self.async_run())
except Exception:
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
self.child.send(f'[Local Message] Claude失败 {tb_str}.')
self.child.send('[Fail]')
self.child.send('[Finish]')
def stream_chat(self, **kwargs):
"""
这个函数运行在主进程
"""
self.threadLock.acquire()
self.parent.send(kwargs) # 发送请求到子进程
while True:
res = self.parent.recv() # 等待Claude回复的片段
if res == '[Finish]':
break # 结束
elif res == '[Fail]':
self.success = False
break
else:
yield res # Claude回复的片段
self.threadLock.release()
"""
========================================================================
第三部分主进程统一调用函数接口
========================================================================
"""
global claude_handle
claude_handle = None
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
"""
多线程方法
函数的说明请见 request_llm/bridge_all.py
"""
global claude_handle
if (claude_handle is None) or (not claude_handle.success):
claude_handle = ClaudeHandle()
observe_window[0] = load_message + "\n\n" + claude_handle.info
if not claude_handle.success:
error = claude_handle.info
claude_handle = None
raise RuntimeError(error)
# 没有 sys_prompt 接口因此把prompt加入 history
history_feedin = []
for i in range(len(history)//2):
history_feedin.append([history[2*i], history[2*i+1]])
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
response = ""
observe_window[0] = "[Local Message]: 等待Claude响应中 ..."
for response in claude_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
observe_window[0] = preprocess_newbing_out_simple(response)
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("程序终止。")
return preprocess_newbing_out_simple(response)
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
"""
单线程方法
函数的说明请见 request_llm/bridge_all.py
"""
chatbot.append((inputs, "[Local Message]: 等待Claude响应中 ..."))
global claude_handle
if (claude_handle is None) or (not claude_handle.success):
claude_handle = ClaudeHandle()
chatbot[-1] = (inputs, load_message + "\n\n" + claude_handle.info)
yield from update_ui(chatbot=chatbot, history=[])
if not claude_handle.success:
claude_handle = None
return
if additional_fn is not None:
import core_functional
importlib.reload(core_functional) # 热更新prompt
core_functional = core_functional.get_core_functions()
if "PreProcess" in core_functional[additional_fn]:
inputs = core_functional[additional_fn]["PreProcess"](
inputs) # 获取预处理函数(如果有的话)
inputs = core_functional[additional_fn]["Prefix"] + \
inputs + core_functional[additional_fn]["Suffix"]
history_feedin = []
for i in range(len(history)//2):
history_feedin.append([history[2*i], history[2*i+1]])
chatbot[-1] = (inputs, "[Local Message]: 等待Claude响应中 ...")
response = "[Local Message]: 等待Claude响应中 ..."
yield from update_ui(chatbot=chatbot, history=history, msg="Claude响应缓慢尚未完成全部响应请耐心完成后再提交新问题。")
for response in claude_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt):
chatbot[-1] = (inputs, preprocess_newbing_out(response))
yield from update_ui(chatbot=chatbot, history=history, msg="Claude响应缓慢尚未完成全部响应请耐心完成后再提交新问题。")
if response == "[Local Message]: 等待Claude响应中 ...":
response = "[Local Message]: Claude响应异常请刷新界面重试 ..."
history.extend([inputs, response])
logging.info(f'[raw_input] {inputs}')
logging.info(f'[response] {response}')
yield from update_ui(chatbot=chatbot, history=history, msg="完成全部响应,请提交新问题。")

View File

@ -0,0 +1 @@
slack-sdk==3.21.3

View File

@ -1,5 +1,5 @@
{
"version": 3.34,
"version": 3.35,
"show_feature": true,
"new_feature": "修复新版gradio(3.28.3)的暗色主题适配 <-> 提供复旦MOSS模型适配启用需额外依赖 <-> 提供docker-compose方案兼容LLAMA盘古RWKV等模型的后端 <-> 新增Live2D WAIFU装饰 <-> 完善对话历史的保存/载入/删除 <-> ChatGLM加线程锁提高并发稳定性 <-> 支持NewBing <-> Markdown翻译功能支持直接输入Readme文件网址 <-> 保存对话功能 <-> 解读任意语言代码+同时询问任意的LLM组合 <-> 添加联网Google回答问题插件"
"new_feature": "添加了OpenAI图片生成插件 <-> 添加了OpenAI音频转文本总结插件 <-> 通过Slack添加对Claude的支持 <-> 提供复旦MOSS模型适配启用需额外依赖 <-> 提供docker-compose方案兼容LLAMA盘古RWKV等模型的后端 <-> 新增Live2D装饰 <-> 完善对话历史的保存/载入/删除 <-> 保存对话功能"
}