diff --git a/config.py b/config.py index f170a2b..4284cb8 100644 --- a/config.py +++ b/config.py @@ -91,10 +91,10 @@ AVAIL_LLM_MODELS = ["gpt-3.5-turbo-1106","gpt-4-1106-preview","gpt-4-vision-prev "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5", "api2d-gpt-3.5-turbo", 'api2d-gpt-3.5-turbo-16k', "gpt-4", "gpt-4-32k", "azure-gpt-4", "api2d-gpt-4", - "chatglm3", "moss", "claude-2"] + "chatglm3", "moss", "claude-2","qwen"] # P.S. 其他可用的模型还包括 ["zhipuai", "qianfan", "deepseekcoder", "llama2", "qwen", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-random" # "spark", "sparkv2", "sparkv3", "chatglm_onnx", "claude-1-100k", "claude-2", "internlm", "jittorllms_pangualpha", "jittorllms_llama"] - +# 如果你需要使用Qwen的本地模型,比如qwen1.8b,那么还需要在request_llms\bridge_qwen.py设置一下模型的路径! # 定义界面上“询问多个GPT模型”插件应该使用哪些模型,请从AVAIL_LLM_MODELS中选择,并在不同模型之间用`&`间隔,例如"gpt-3.5-turbo&chatglm3&azure-gpt-4" MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3" diff --git a/request_llms/bridge_qwen.py b/request_llms/bridge_qwen.py index 85a4d80..d8408d8 100644 --- a/request_llms/bridge_qwen.py +++ b/request_llms/bridge_qwen.py @@ -30,7 +30,7 @@ class GetQwenLMHandle(LocalLLMHandle): from modelscope import AutoModelForCausalLM, AutoTokenizer, GenerationConfig with ProxyNetworkActivate('Download_LLM'): - model_id = 'qwen/Qwen-7B-Chat' + model_id = 'qwen/Qwen-7B-Chat' #在这里更改路径,如果你已经下载好了的话,同时,别忘记tokenizer self._tokenizer = AutoTokenizer.from_pretrained('Qwen/Qwen-7B-Chat', trust_remote_code=True, resume_download=True) # use fp16 model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True, fp16=True).eval() @@ -51,7 +51,7 @@ class GetQwenLMHandle(LocalLLMHandle): query, max_length, top_p, temperature, history = adaptor(kwargs) - for response in self._model.chat(self._tokenizer, query, history=history, stream=True): + for response in self._model.chat_stream(self._tokenizer, query, history=history): yield response def try_to_import_special_deps(self, **kwargs):