重命名一些函数

This commit is contained in:
Your Name 2023-04-06 02:02:04 +08:00
parent 785893b64f
commit dcaa7a1808
10 changed files with 369 additions and 56 deletions

View File

@ -4,7 +4,7 @@
# 默认按钮颜色是 secondary
from toolbox import clear_line_break
def get_functionals():
def get_core_functions():
return {
"英语学术润色": {
# 前言

View File

@ -1,6 +1,6 @@
from toolbox import HotReload # HotReload 的意思是热更新,修改函数插件后,不需要重启程序,代码直接生效
def get_crazy_functionals():
def get_crazy_functions():
###################### 第一组插件 ###########################
# [第一组插件]: 最早期编写的项目插件和一些demo
from crazy_functions.读文章写摘要 import 读文章写摘要
@ -97,6 +97,14 @@ def get_crazy_functionals():
"Function": HotReload(下载arxiv论文并翻译摘要)
}
})
from crazy_functions.批量翻译PDF文档_多线程 import 批量翻译PDF文档
function_plugins.update({
"批量翻译PDF文档多线程": {
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(批量翻译PDF文档)
}
})
except Exception as err:
print(f'[下载arxiv论文并翻译摘要] 插件导入失败 {str(err)}')

View File

@ -0,0 +1,58 @@
def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
def cut(txt_tocut, must_break_at_empty_line): # 递归
if get_token_fn(txt_tocut) <= limit:
return [txt_tocut]
else:
lines = txt_tocut.split('\n')
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
estimated_line_cut = int(estimated_line_cut)
for cnt in reversed(range(estimated_line_cut)):
if must_break_at_empty_line:
if lines[cnt] != "": continue
print(cnt)
prev = "\n".join(lines[:cnt])
post = "\n".join(lines[cnt:])
if get_token_fn(prev) < limit: break
if cnt == 0:
print('what the fuck ?')
raise RuntimeError("存在一行极长的文本!")
# print(len(post))
# 列表递归接龙
result = [prev]
result.extend(cut(post, must_break_at_empty_line))
return result
try:
return cut(txt, must_break_at_empty_line=True)
except RuntimeError:
return cut(txt, must_break_at_empty_line=False)
def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
def cut(txt_tocut, must_break_at_empty_line): # 递归
if get_token_fn(txt_tocut) <= limit:
return [txt_tocut]
else:
lines = txt_tocut.split('\n')
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
estimated_line_cut = int(estimated_line_cut)
for cnt in reversed(range(estimated_line_cut)):
if must_break_at_empty_line:
if lines[cnt] != "": continue
print(cnt)
prev = "\n".join(lines[:cnt])
post = "\n".join(lines[cnt:])
if get_token_fn(prev) < limit: break
if cnt == 0:
print('what the fuck ?')
raise RuntimeError("存在一行极长的文本!")
# print(len(post))
# 列表递归接龙
result = [prev]
result.extend(cut(post, must_break_at_empty_line))
return result
try:
return cut(txt, must_break_at_empty_line=True)
except RuntimeError:
return cut(txt, must_break_at_empty_line=False)

View File

@ -1,6 +1,7 @@
import threading
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
from toolbox import CatchException, write_results_to_file, report_execption
from .crazy_utils import breakdown_txt_to_satisfy_token_limit
def extract_code_block_carefully(txt):
splitted = txt.split('```')
@ -10,33 +11,6 @@ def extract_code_block_carefully(txt):
txt_out = '```'.join(splitted[1:-1])
return txt_out
def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit, must_break_at_empty_line=True):
def cut(txt_tocut, must_break_at_empty_line): # 递归
if get_token_fn(txt_tocut) <= limit:
return [txt_tocut]
else:
lines = txt_tocut.split('\n')
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
estimated_line_cut = int(estimated_line_cut)
for cnt in reversed(range(estimated_line_cut)):
if must_break_at_empty_line:
if lines[cnt] != "": continue
print(cnt)
prev = "\n".join(lines[:cnt])
post = "\n".join(lines[cnt:])
if get_token_fn(prev) < limit: break
if cnt == 0:
print('what the f?')
raise RuntimeError("存在一行极长的文本!")
print(len(post))
# 列表递归接龙
result = [prev]
result.extend(cut(post, must_break_at_empty_line))
return result
try:
return cut(txt, must_break_at_empty_line=True)
except RuntimeError:
return cut(txt, must_break_at_empty_line=False)
def break_txt_into_half_at_some_linebreak(txt):

View File

@ -0,0 +1,255 @@
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
import re
import unicodedata
fast_debug = False
def is_paragraph_break(match):
"""
根据给定的匹配结果来判断换行符是否表示段落分隔
如果换行符前为句子结束标志句号感叹号问号且下一个字符为大写字母则换行符更有可能表示段落分隔
也可以根据之前的内容长度来判断段落是否已经足够长
"""
prev_char, next_char = match.groups()
# 句子结束标志
sentence_endings = ".!?"
# 设定一个最小段落长度阈值
min_paragraph_length = 140
if prev_char in sentence_endings and next_char.isupper() and len(match.string[:match.start(1)]) > min_paragraph_length:
return "\n\n"
else:
return " "
def normalize_text(text):
"""
通过把连字ligatures等文本特殊符号转换为其基本形式来对文本进行归一化处理
例如将连字 "fi" 转换为 "f" "i"
"""
# 对文本进行归一化处理,分解连字
normalized_text = unicodedata.normalize("NFKD", text)
# 替换其他特殊字符
cleaned_text = re.sub(r'[^\x00-\x7F]+', '', normalized_text)
return cleaned_text
def clean_text(raw_text):
"""
对从 PDF 提取出的原始文本进行清洗和格式化处理
1. 对原始文本进行归一化处理
2. 替换跨行的连词例如 Espe-\ncially 转换为 Especially
3. 根据 heuristic 规则判断换行符是否是段落分隔并相应地进行替换
"""
# 对文本进行归一化处理
normalized_text = normalize_text(raw_text)
# 替换跨行的连词
text = re.sub(r'(\w+-\n\w+)',
lambda m: m.group(1).replace('-\n', ''), normalized_text)
# 根据前后相邻字符的特点,找到原文本中的换行符
newlines = re.compile(r'(\S)\n(\S)')
# 根据 heuristic 规则,用空格或段落分隔符替换原换行符
final_text = re.sub(newlines, lambda m: m.group(
1) + is_paragraph_break(m) + m.group(2), text)
return final_text.strip()
def read_and_clean_pdf_text(fp):
import fitz, re
import numpy as np
# file_content = ""
with fitz.open(fp) as doc:
meta_txt = []
meta_font = []
for page in doc:
# file_content += page.get_text()
text_areas = page.get_text("dict") # 获取页面上的文本信息
# # 行元提取 for each word segment with in line for each line for each block
# meta_txt.extend( [ ["".join( [wtf['text'] for wtf in l['spans'] ]) for l in t['lines'] ] for t in text_areas['blocks'] if 'lines' in t])
# meta_font.extend([ [ np.mean([wtf['size'] for wtf in l['spans'] ]) for l in t['lines'] ] for t in text_areas['blocks'] if 'lines' in t])
# 块元提取 for each word segment with in line for each line for each block
meta_txt.extend( [ " ".join(["".join( [wtf['text'] for wtf in l['spans'] ]) for l in t['lines'] ]) for t in text_areas['blocks'] if 'lines' in t])
meta_font.extend([ np.mean( [ np.mean([wtf['size'] for wtf in l['spans'] ]) for l in t['lines'] ]) for t in text_areas['blocks'] if 'lines' in t])
def 把字符太少的块清除为回车(meta_txt):
for index, block_txt in enumerate(meta_txt):
if len(block_txt) < 100:
meta_txt[index] = '\n'
return meta_txt
meta_txt = 把字符太少的块清除为回车(meta_txt)
def 清理多余的空行(meta_txt):
for index in reversed(range(1, len(meta_txt))):
if meta_txt[index] == '\n' and meta_txt[index-1] == '\n':
meta_txt.pop(index)
return meta_txt
meta_txt = 清理多余的空行(meta_txt)
def 合并小写开头的段落块(meta_txt):
def starts_with_lowercase_word(s):
pattern = r"^[a-z]+"
match = re.match(pattern, s)
if match:
return True
else:
return False
for _ in range(100):
for index, block_txt in enumerate(meta_txt):
if starts_with_lowercase_word(block_txt):
if meta_txt[index-1]!='\n': meta_txt[index-1] += ' '
else: meta_txt[index-1] = ''
meta_txt[index-1] += meta_txt[index]
meta_txt[index] = '\n'
return meta_txt
meta_txt = 合并小写开头的段落块(meta_txt)
meta_txt = 清理多余的空行(meta_txt)
meta_txt = '\n'.join(meta_txt)
# 清除重复的换行
for _ in range(5):
meta_txt = meta_txt.replace('\n\n','\n')
# 换行 -> 双换行
meta_txt = meta_txt.replace('\n', '\n\n')
# print(meta_txt)
return meta_txt
@CatchException
def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
import glob
import os
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"批量总结PDF文档。函数插件贡献者: Binary-Husky, ValeriaWong, Eralien"])
yield chatbot, history, '正常'
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import fitz, tiktoken
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
yield chatbot, history, '正常'
return
# 清空历史,以免输入溢出
history = []
# 检测输入参数,如没有给定输入参数,直接退出
if os.path.exists(txt):
project_folder = txt
else:
if txt == "":
txt = '空空如也的输入栏'
report_execption(chatbot, history,
a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
return
# 搜索需要处理的文件清单
file_manifest = [f for f in glob.glob(
f'{project_folder}/**/*.pdf', recursive=True)]
# 如果没找到任何文件
if len(file_manifest) == 0:
report_execption(chatbot, history,
a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}")
yield chatbot, history, '正常'
return
# 开始正式执行任务
yield from 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
import time
import glob
import os
import fitz
import tiktoken
from concurrent.futures import ThreadPoolExecutor
print('begin analysis on:', file_manifest)
for index, fp in enumerate(file_manifest):
### 1. 读取PDF文件
file_content = read_and_clean_pdf_text(fp)
### 2. 递归地切割PDF文件
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
enc = tiktoken.get_encoding("gpt2")
TOKEN_LIMIT_PER_FRAGMENT = 2048
get_token_num = lambda txt: len(enc.encode(txt))
# 分解
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
print([get_token_num(frag) for frag in paper_fragments])
### 3. 逐个段落翻译
## 3.1. 多线程开始
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
n_frag = len(paper_fragments)
# 异步原子
mutable = [["", time.time()] for _ in range(n_frag)]
# 翻译函数
def translate_(index, fragment, mutable):
i_say = f"以下是你需要翻译的文章段落:{fragment}"
# 请求gpt需要一段时间
gpt_say = predict_no_ui_long_connection(
inputs=i_say, top_p=top_p, temperature=temperature, history=[], # ["请翻译:" if len(previous_result)!=0 else "", previous_result],
sys_prompt="请你作为一个学术翻译,负责将给定的文章段落翻译成中文,要求语言简洁、精准、凝练。你只需要给出翻译后的文本,不能重复原文。",
observe_window=mutable[index])
return gpt_say
### 4. 异步任务开始
executor = ThreadPoolExecutor(max_workers=16)
# Submit tasks to the pool
futures = [executor.submit(translate_, index, frag, mutable) for index, frag in enumerate(paper_fragments)]
### 5. UI主线程在任务期间提供实时的前端显示
cnt = 0
while True:
cnt += 1
time.sleep(1)
worker_done = [h.done() for h in futures]
if all(worker_done):
executor.shutdown(); break
# 更好的UI视觉效果
observe_win = []
# 每个线程都要喂狗(看门狗)
for thread_index, _ in enumerate(worker_done):
mutable[thread_index][1] = time.time()
# 在前端打印些好玩的东西
for thread_index, _ in enumerate(worker_done):
print_something_really_funny = "[ ...`"+mutable[thread_index][0][-30:].replace('\n','').replace('```','...').replace(' ','.').replace('<br/>','.....').replace('$','.')+"`... ]"
observe_win.append(print_something_really_funny)
stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(worker_done, observe_win)])
chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt%10+1))]; msg = "正常"
yield chatbot, history, msg
# Wait for tasks to complete
results = [future.result() for future in futures]
print(results)
# full_result += gpt_say
# history.extend([fp, full_result])
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res)); msg = "完成"
yield chatbot, history, msg
# if __name__ == '__main__':
# pro()

View File

@ -14,12 +14,13 @@ def 高阶功能模板函数(txt, top_p, temperature, chatbot, history, systemPr
i_say = f'历史中哪些事件发生在{currentMonth}{currentDay}列举两条并发送相关图片。发送图片时请使用Markdown将Unsplash API中的PUT_YOUR_QUERY_HERE替换成描述该事件的一个最重要的单词。'
chatbot.append((i_say, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常' # 由于请求gpt需要一段时间我们先及时地做一次状态显示
# history = [] 每次询问不携带之前的询问历史
gpt_say = predict_no_ui_long_connection(
inputs=i_say, top_p=top_p, temperature=temperature, history=[],
sys_prompt="当你想发送一张照片时请使用Markdown, 并且不要有反斜线, 不要用代码块。使用 Unsplash API (https://source.unsplash.com/1280x720/? < PUT_YOUR_QUERY_HERE >)。") # 请求gpt需要一段时间
try:
# history = [] 每次询问不携带之前的询问历史
gpt_say = predict_no_ui_long_connection(
inputs=i_say, top_p=top_p, temperature=temperature, history=[],
sys_prompt="当你想发送一张照片时请使用Markdown, 并且不要有反斜线, 不要用代码块。使用 Unsplash API (https://source.unsplash.com/1280x720/? < PUT_YOUR_QUERY_HERE >)。") # 请求gpt需要一段时间
except:
print("")
chatbot[-1] = (i_say, gpt_say)
history.append(i_say);history.append(gpt_say)
yield chatbot, history, '正常' # 显示

View File

@ -23,12 +23,12 @@ except:logging.basicConfig(filename="gpt_log/chat_secrets.log", level=logging.IN
print("所有问询记录将自动保存在本地目录./gpt_log/chat_secrets.log, 请注意自我隐私保护哦!")
# 一些普通功能模块
from functional import get_functionals
functional = get_functionals()
from core_functional import get_core_functions
functional = get_core_functions()
# 高级函数插件
from functional_crazy import get_crazy_functionals
crazy_fns = get_crazy_functionals()
from crazy_functional import get_crazy_functions
crazy_fns = get_crazy_functions()
# 处理markdown文本格式的转变
gr.Chatbot.postprocess = format_io

View File

@ -12,6 +12,7 @@
"""
import json
import time
import gradio as gr
import logging
import traceback
@ -73,11 +74,20 @@ def predict_no_ui(inputs, top_p, temperature, history=[], sys_prompt=""):
def predict_no_ui_long_connection(inputs, top_p, temperature, history=[], sys_prompt="", observe_window=None):
"""
发送至chatGPT等待回复一次性完成不显示中间过程但内部用stream的方法避免有人中途掐网线
observe_window用于负责跨越线程传递已经输出的部分大部分时候仅仅为了fancy的视觉效果留空即可
发送至chatGPT等待回复一次性完成不显示中间过程但内部用stream的方法避免中途网线被掐
inputs
是本次问询的输入
sys_prompt:
系统静默prompt
top_p, temperature
chatGPT的内部调优参数
history
是之前的对话列表
observe_window = None
用于负责跨越线程传递已经输出的部分大部分时候仅仅为了fancy的视觉效果留空即可observe_window[0]观测窗observe_window[1]看门狗
"""
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt=sys_prompt, stream=True)
retry = 0
while True:
try:
@ -109,10 +119,16 @@ def predict_no_ui_long_connection(inputs, top_p, temperature, history=[], sys_pr
if "content" in delta:
result += delta["content"]
print(delta["content"], end='')
if observe_window is not None: observe_window[0] += delta["content"]
if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1: observe_window[0] += delta["content"]
# 看门狗,如果超过期限没有喂狗,则终止
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("程序终止。")
else: raise RuntimeError("意外Json结构"+delta)
if json_data['finish_reason'] == 'length':
raise ConnectionAbortedError("正常结束但显示Token不足。")
raise ConnectionAbortedError("正常结束但显示Token不足,导致输出不完整,请削减单次输入的文本量")
return result
@ -128,11 +144,11 @@ def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt=''
additional_fn代表点击的哪个按钮按钮见functional.py
"""
if additional_fn is not None:
import functional
importlib.reload(functional) # 热更新prompt
functional = functional.get_functionals()
if "PreProcess" in functional[additional_fn]: inputs = functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = functional[additional_fn]["Prefix"] + inputs + functional[additional_fn]["Suffix"]
import core_functional
importlib.reload(core_functional) # 热更新prompt
core_functional = core_functional.get_functions()
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
if stream:
raw_input = inputs
@ -189,10 +205,10 @@ def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt=''
chunk = get_full_error(chunk, stream_response)
error_msg = chunk.decode()
if "reduce the length" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Input (or history) is too long, please reduce input or clear history by refreshing this page.")
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长,或历史数据过长. 历史缓存数据现已释放,您可以请再次尝试.")
history = [] # 清除历史
elif "Incorrect API key" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key provided.")
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由拒绝服务.")
elif "exceeded your current quota" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由拒绝服务.")
else:

View File

@ -101,11 +101,11 @@ def predict_tgui(inputs, top_p, temperature, chatbot=[], history=[], system_prom
additional_fn代表点击的哪个按钮按钮见functional.py
"""
if additional_fn is not None:
import functional
importlib.reload(functional) # 热更新prompt
functional = functional.get_functionals()
if "PreProcess" in functional[additional_fn]: inputs = functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = functional[additional_fn]["Prefix"] + inputs + functional[additional_fn]["Suffix"]
import core_functional
importlib.reload(core_functional) # 热更新prompt
core_functional = core_functional.get_functions()
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
raw_input = "What I would like to say is the following: " + inputs
logging.info(f'[raw_input] {raw_input}')

View File

@ -5,3 +5,4 @@ Markdown
latex2mathml
openai
transformers
numpy