Update Claude3 api request and fix some bugs (#1641)

* Update version to 3.74

* Add support for Yi Model API (#1635)

* 更新以支持零一万物模型

* 删除newbing

* 修改config

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* Update claude requrest to http type

* Update for endpoint

* Add support for other tpyes of pictures

* Update pip packages

* Fix console_slience issue while error handling

* revert version changes

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
This commit is contained in:
Menghuan1918 2024-03-20 17:22:23 +08:00 committed by GitHub
parent 84ccc9e64c
commit e42ede512b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 474 additions and 98 deletions

View File

@ -47,6 +47,7 @@ AVAIL_LLM_MODELS = ["gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-p
# "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0125" # "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0125"
# "claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2", # "claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2",
# "moss", "llama2", "chatglm_onnx", "internlm", "jittorllms_pangualpha", "jittorllms_llama", # "moss", "llama2", "chatglm_onnx", "internlm", "jittorllms_pangualpha", "jittorllms_llama",
# "yi-34b-chat-0205", "yi-34b-chat-200k"
# ] # ]
# --- --- --- --- # --- --- --- ---
# 此外为了更灵活地接入one-api多模型管理界面您还可以在接入one-api时 # 此外为了更灵活地接入one-api多模型管理界面您还可以在接入one-api时
@ -212,6 +213,10 @@ ANTHROPIC_API_KEY = ""
MOONSHOT_API_KEY = "" MOONSHOT_API_KEY = ""
# 零一万物(Yi Model) API KEY
YIMODEL_API_KEY = ""
# Mathpix 拥有执行PDF的OCR功能但是需要注册账号 # Mathpix 拥有执行PDF的OCR功能但是需要注册账号
MATHPIX_APPID = "" MATHPIX_APPID = ""
MATHPIX_APPKEY = "" MATHPIX_APPKEY = ""
@ -313,6 +318,9 @@ NUM_CUSTOM_BASIC_BTN = 4
"glm-4", "glm-3-turbo", "zhipuai" 智谱AI大模型 "glm-4", "glm-3-turbo", "zhipuai" 智谱AI大模型
ZHIPUAI_API_KEY ZHIPUAI_API_KEY
"yi-34b-chat-0205", "yi-34b-chat-200k" 等零一万物(Yi Model)大模型
YIMODEL_API_KEY
"qwen-turbo" 等通义千问大模型 "qwen-turbo" 等通义千问大模型
DASHSCOPE_API_KEY DASHSCOPE_API_KEY

View File

@ -62,7 +62,8 @@ openai_endpoint = "https://api.openai.com/v1/chat/completions"
api2d_endpoint = "https://openai.api2d.net/v1/chat/completions" api2d_endpoint = "https://openai.api2d.net/v1/chat/completions"
newbing_endpoint = "wss://sydney.bing.com/sydney/ChatHub" newbing_endpoint = "wss://sydney.bing.com/sydney/ChatHub"
gemini_endpoint = "https://generativelanguage.googleapis.com/v1beta/models" gemini_endpoint = "https://generativelanguage.googleapis.com/v1beta/models"
claude_endpoint = "https://api.anthropic.com" claude_endpoint = "https://api.anthropic.com/v1/messages"
yimodel_endpoint = "https://api.lingyiwanwu.com/v1/chat/completions"
if not AZURE_ENDPOINT.endswith('/'): AZURE_ENDPOINT += '/' if not AZURE_ENDPOINT.endswith('/'): AZURE_ENDPOINT += '/'
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15' azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
@ -80,6 +81,7 @@ if api2d_endpoint in API_URL_REDIRECT: api2d_endpoint = API_URL_REDIRECT[api2d_e
if newbing_endpoint in API_URL_REDIRECT: newbing_endpoint = API_URL_REDIRECT[newbing_endpoint] if newbing_endpoint in API_URL_REDIRECT: newbing_endpoint = API_URL_REDIRECT[newbing_endpoint]
if gemini_endpoint in API_URL_REDIRECT: gemini_endpoint = API_URL_REDIRECT[gemini_endpoint] if gemini_endpoint in API_URL_REDIRECT: gemini_endpoint = API_URL_REDIRECT[gemini_endpoint]
if claude_endpoint in API_URL_REDIRECT: claude_endpoint = API_URL_REDIRECT[claude_endpoint] if claude_endpoint in API_URL_REDIRECT: claude_endpoint = API_URL_REDIRECT[claude_endpoint]
if yimodel_endpoint in API_URL_REDIRECT: yimodel_endpoint = API_URL_REDIRECT[yimodel_endpoint]
# 获取tokenizer # 获取tokenizer
tokenizer_gpt35 = LazyloadTiktoken("gpt-3.5-turbo") tokenizer_gpt35 = LazyloadTiktoken("gpt-3.5-turbo")
@ -316,6 +318,7 @@ model_info.update({
"moonshot-v1-8k": { "moonshot-v1-8k": {
"fn_with_ui": moonshot_ui, "fn_with_ui": moonshot_ui,
"fn_without_ui": moonshot_no_ui, "fn_without_ui": moonshot_no_ui,
"can_multi_thread": True,
"endpoint": None, "endpoint": None,
"max_token": 1024 * 8, "max_token": 1024 * 8,
"tokenizer": tokenizer_gpt35, "tokenizer": tokenizer_gpt35,
@ -324,6 +327,7 @@ model_info.update({
"moonshot-v1-32k": { "moonshot-v1-32k": {
"fn_with_ui": moonshot_ui, "fn_with_ui": moonshot_ui,
"fn_without_ui": moonshot_no_ui, "fn_without_ui": moonshot_no_ui,
"can_multi_thread": True,
"endpoint": None, "endpoint": None,
"max_token": 1024 * 32, "max_token": 1024 * 32,
"tokenizer": tokenizer_gpt35, "tokenizer": tokenizer_gpt35,
@ -332,6 +336,7 @@ model_info.update({
"moonshot-v1-128k": { "moonshot-v1-128k": {
"fn_with_ui": moonshot_ui, "fn_with_ui": moonshot_ui,
"fn_without_ui": moonshot_no_ui, "fn_without_ui": moonshot_no_ui,
"can_multi_thread": True,
"endpoint": None, "endpoint": None,
"max_token": 1024 * 128, "max_token": 1024 * 128,
"tokenizer": tokenizer_gpt35, "tokenizer": tokenizer_gpt35,
@ -473,22 +478,6 @@ if "stack-claude" in AVAIL_LLM_MODELS:
"token_cnt": get_token_num_gpt35, "token_cnt": get_token_num_gpt35,
} }
}) })
if "newbing-free" in AVAIL_LLM_MODELS:
try:
from .bridge_newbingfree import predict_no_ui_long_connection as newbingfree_noui
from .bridge_newbingfree import predict as newbingfree_ui
model_info.update({
"newbing-free": {
"fn_with_ui": newbingfree_ui,
"fn_without_ui": newbingfree_noui,
"endpoint": newbing_endpoint,
"max_token": 4096,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
}
})
except:
print(trimmed_format_exc())
if "newbing" in AVAIL_LLM_MODELS: # same with newbing-free if "newbing" in AVAIL_LLM_MODELS: # same with newbing-free
try: try:
from .bridge_newbingfree import predict_no_ui_long_connection as newbingfree_noui from .bridge_newbingfree import predict_no_ui_long_connection as newbingfree_noui
@ -521,6 +510,7 @@ if "chatglmft" in AVAIL_LLM_MODELS: # same with newbing-free
}) })
except: except:
print(trimmed_format_exc()) print(trimmed_format_exc())
# -=-=-=-=-=-=- 上海AI-LAB书生大模型 -=-=-=-=-=-=-
if "internlm" in AVAIL_LLM_MODELS: if "internlm" in AVAIL_LLM_MODELS:
try: try:
from .bridge_internlm import predict_no_ui_long_connection as internlm_noui from .bridge_internlm import predict_no_ui_long_connection as internlm_noui
@ -553,6 +543,7 @@ if "chatglm_onnx" in AVAIL_LLM_MODELS:
}) })
except: except:
print(trimmed_format_exc()) print(trimmed_format_exc())
# -=-=-=-=-=-=- 通义-本地模型 -=-=-=-=-=-=-
if "qwen-local" in AVAIL_LLM_MODELS: if "qwen-local" in AVAIL_LLM_MODELS:
try: try:
from .bridge_qwen_local import predict_no_ui_long_connection as qwen_local_noui from .bridge_qwen_local import predict_no_ui_long_connection as qwen_local_noui
@ -570,6 +561,7 @@ if "qwen-local" in AVAIL_LLM_MODELS:
}) })
except: except:
print(trimmed_format_exc()) print(trimmed_format_exc())
# -=-=-=-=-=-=- 通义-在线模型 -=-=-=-=-=-=-
if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-max" in AVAIL_LLM_MODELS: # zhipuai if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-max" in AVAIL_LLM_MODELS: # zhipuai
try: try:
from .bridge_qwen import predict_no_ui_long_connection as qwen_noui from .bridge_qwen import predict_no_ui_long_connection as qwen_noui
@ -605,7 +597,35 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
}) })
except: except:
print(trimmed_format_exc()) print(trimmed_format_exc())
if "spark" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型 # -=-=-=-=-=-=- 零一万物模型 -=-=-=-=-=-=-
if "yi-34b-chat-0205" in AVAIL_LLM_MODELS or "yi-34b-chat-200k" in AVAIL_LLM_MODELS: # zhipuai
try:
from .bridge_yimodel import predict_no_ui_long_connection as yimodel_noui
from .bridge_yimodel import predict as yimodel_ui
model_info.update({
"yi-34b-chat-0205": {
"fn_with_ui": yimodel_ui,
"fn_without_ui": yimodel_noui,
"can_multi_thread": False, # 目前来说,默认情况下并发量极低,因此禁用
"endpoint": yimodel_endpoint,
"max_token": 4000,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"yi-34b-chat-200k": {
"fn_with_ui": yimodel_ui,
"fn_without_ui": yimodel_noui,
"can_multi_thread": False, # 目前来说,默认情况下并发量极低,因此禁用
"endpoint": yimodel_endpoint,
"max_token": 200000,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
})
except:
print(trimmed_format_exc())
# -=-=-=-=-=-=- 讯飞星火认知大模型 -=-=-=-=-=-=-
if "spark" in AVAIL_LLM_MODELS:
try: try:
from .bridge_spark import predict_no_ui_long_connection as spark_noui from .bridge_spark import predict_no_ui_long_connection as spark_noui
from .bridge_spark import predict as spark_ui from .bridge_spark import predict as spark_ui
@ -681,6 +701,7 @@ if "llama2" in AVAIL_LLM_MODELS: # llama2
}) })
except: except:
print(trimmed_format_exc()) print(trimmed_format_exc())
# -=-=-=-=-=-=- 智谱 -=-=-=-=-=-=-
if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai 是glm-4的别名向后兼容配置 if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai 是glm-4的别名向后兼容配置
try: try:
model_info.update({ model_info.update({
@ -695,6 +716,7 @@ if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai 是glm-4的别名向后兼容
}) })
except: except:
print(trimmed_format_exc()) print(trimmed_format_exc())
# -=-=-=-=-=-=- 幻方-深度求索大模型 -=-=-=-=-=-=-
if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
try: try:
from .bridge_deepseekcoder import predict_no_ui_long_connection as deepseekcoder_noui from .bridge_deepseekcoder import predict_no_ui_long_connection as deepseekcoder_noui
@ -711,6 +733,8 @@ if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
}) })
except: except:
print(trimmed_format_exc()) print(trimmed_format_exc())
# -=-=-=-=-=-=- one-api 对齐支持 -=-=-=-=-=-=- # -=-=-=-=-=-=- one-api 对齐支持 -=-=-=-=-=-=-
for model in [m for m in AVAIL_LLM_MODELS if m.startswith("one-api-")]: for model in [m for m in AVAIL_LLM_MODELS if m.startswith("one-api-")]:
# 为了更灵活地接入one-api多模型管理界面设计了此接口例子AVAIL_LLM_MODELS = ["one-api-mixtral-8x7b(max_token=6666)"] # 为了更灵活地接入one-api多模型管理界面设计了此接口例子AVAIL_LLM_MODELS = ["one-api-mixtral-8x7b(max_token=6666)"]
@ -735,8 +759,8 @@ for model in [m for m in AVAIL_LLM_MODELS if m.startswith("one-api-")]:
}) })
# <-- 用于定义和切换多个azure模型 --> # -=-=-=-=-=-=- azure模型对齐支持 -=-=-=-=-=-=-
AZURE_CFG_ARRAY = get_conf("AZURE_CFG_ARRAY") AZURE_CFG_ARRAY = get_conf("AZURE_CFG_ARRAY") # <-- 用于定义和切换多个azure模型 -->
if len(AZURE_CFG_ARRAY) > 0: if len(AZURE_CFG_ARRAY) > 0:
for azure_model_name, azure_cfg_dict in AZURE_CFG_ARRAY.items(): for azure_model_name, azure_cfg_dict in AZURE_CFG_ARRAY.items():
# 可能会覆盖之前的配置,但这是意料之中的 # 可能会覆盖之前的配置,但这是意料之中的

View File

@ -9,12 +9,13 @@
具备多线程调用能力的函数 具备多线程调用能力的函数
2. predict_no_ui_long_connection支持多线程 2. predict_no_ui_long_connection支持多线程
""" """
import logging
import os import os
import time import time
import traceback import traceback
from toolbox import get_conf, update_ui, trimmed_format_exc, encode_image, every_image_file_in_path from toolbox import get_conf, update_ui, trimmed_format_exc, encode_image, every_image_file_in_path
import json
import requests
picture_system_prompt = "\n当回复图像时,必须说明正在回复哪张图像。所有图像仅在最后一个问题中提供,即使它们在历史记录中被提及。请使用'这是第X张图像:'的格式来指明您正在描述的是哪张图像。" picture_system_prompt = "\n当回复图像时,必须说明正在回复哪张图像。所有图像仅在最后一个问题中提供,即使它们在历史记录中被提及。请使用'这是第X张图像:'的格式来指明您正在描述的是哪张图像。"
Claude_3_Models = ["claude-3-sonnet-20240229", "claude-3-opus-20240229"] Claude_3_Models = ["claude-3-sonnet-20240229", "claude-3-opus-20240229"]
@ -38,6 +39,34 @@ def get_full_error(chunk, stream_response):
break break
return chunk return chunk
def decode_chunk(chunk):
# 提前读取一些信息(用于判断异常)
chunk_decoded = chunk.decode()
chunkjson = None
is_last_chunk = False
need_to_pass = False
if chunk_decoded.startswith('data:'):
try:
chunkjson = json.loads(chunk_decoded[6:])
except:
need_to_pass = True
pass
elif chunk_decoded.startswith('event:'):
try:
event_type = chunk_decoded.split(':')[1].strip()
if event_type == 'content_block_stop' or event_type == 'message_stop':
is_last_chunk = True
elif event_type == 'content_block_start' or event_type == 'message_start':
need_to_pass = True
pass
except:
need_to_pass = True
pass
else:
need_to_pass = True
pass
return need_to_pass, chunkjson, is_last_chunk
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False): def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
""" """
@ -53,53 +82,60 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
observe_window = None observe_window = None
用于负责跨越线程传递已经输出的部分大部分时候仅仅为了fancy的视觉效果留空即可observe_window[0]观测窗observe_window[1]看门狗 用于负责跨越线程传递已经输出的部分大部分时候仅仅为了fancy的视觉效果留空即可observe_window[0]观测窗observe_window[1]看门狗
""" """
from anthropic import Anthropic
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可 watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
if inputs == "": inputs = "空空如也的输入栏"
message = generate_payload(inputs, llm_kwargs, history, stream=True, image_paths=None)
retry = 0
if len(ANTHROPIC_API_KEY) == 0: if len(ANTHROPIC_API_KEY) == 0:
raise RuntimeError("没有设置ANTHROPIC_API_KEY选项") raise RuntimeError("没有设置ANTHROPIC_API_KEY选项")
if inputs == "": inputs = "空空如也的输入栏"
headers, message = generate_payload(inputs, llm_kwargs, history, sys_prompt, image_paths=None)
retry = 0
while True: while True:
try: try:
# make a POST request to the API endpoint, stream=False # make a POST request to the API endpoint, stream=False
from .bridge_all import model_info from .bridge_all import model_info
anthropic = Anthropic(api_key=ANTHROPIC_API_KEY, base_url=model_info[llm_kwargs['llm_model']]['endpoint']) endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
# endpoint = model_info[llm_kwargs['llm_model']]['endpoint'] response = requests.post(endpoint, headers=headers, json=message,
# with ProxyNetworkActivate() proxies=proxies, stream=True, timeout=TIMEOUT_SECONDS);break
stream = anthropic.messages.create( except requests.exceptions.ReadTimeout as e:
messages=message,
max_tokens=4096, # The maximum number of tokens to generate before stopping.
model=llm_kwargs['llm_model'],
stream=True,
temperature = llm_kwargs['temperature'],
system=sys_prompt
)
break
except Exception as e:
retry += 1 retry += 1
traceback.print_exc() traceback.print_exc()
if retry > MAX_RETRY: raise TimeoutError if retry > MAX_RETRY: raise TimeoutError
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……') if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
stream_response = response.iter_lines()
result = '' result = ''
try: while True:
for completion in stream: try: chunk = next(stream_response)
if completion.type == "message_start" or completion.type == "content_block_start": except StopIteration:
continue break
elif completion.type == "message_stop" or completion.type == "content_block_stop" or completion.type == "message_delta": except requests.exceptions.ConnectionError:
break chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
result += completion.delta.text need_to_pass, chunkjson, is_last_chunk = decode_chunk(chunk)
if not console_slience: print(completion.delta.text, end='') if chunk:
if observe_window is not None: try:
# 观测窗,把已经获取的数据显示出去 if need_to_pass:
if len(observe_window) >= 1: observe_window[0] += completion.delta.text pass
# 看门狗,如果超过期限没有喂狗,则终止 elif is_last_chunk:
if len(observe_window) >= 2: logging.info(f'[response] {result}')
if (time.time()-observe_window[1]) > watch_dog_patience: break
raise RuntimeError("用户取消了程序。") else:
except Exception as e: if chunkjson and chunkjson['type'] == 'content_block_delta':
traceback.print_exc() result += chunkjson['delta']['text']
print(chunkjson['delta']['text'], end='')
if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1:
observe_window[0] += chunkjson['delta']['text']
# 看门狗,如果超过期限没有喂狗,则终止
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("用户取消了程序。")
except Exception as e:
chunk = get_full_error(chunk, stream_response)
chunk_decoded = chunk.decode()
error_msg = chunk_decoded
print(error_msg)
raise RuntimeError("Json解析不合常规")
return result return result
@ -119,7 +155,6 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
additional_fn代表点击的哪个按钮按钮见functional.py additional_fn代表点击的哪个按钮按钮见functional.py
""" """
if inputs == "": inputs = "空空如也的输入栏" if inputs == "": inputs = "空空如也的输入栏"
from anthropic import Anthropic
if len(ANTHROPIC_API_KEY) == 0: if len(ANTHROPIC_API_KEY) == 0:
chatbot.append((inputs, "没有设置ANTHROPIC_API_KEY")) chatbot.append((inputs, "没有设置ANTHROPIC_API_KEY"))
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面 yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
@ -145,7 +180,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面 yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
try: try:
message = generate_payload(inputs, llm_kwargs, history, stream, image_paths) headers, message = generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths)
except RuntimeError as e: except RuntimeError as e:
chatbot[-1] = (inputs, f"您提供的api-key不满足要求不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。") chatbot[-1] = (inputs, f"您提供的api-key不满足要求不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面 yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
@ -158,46 +193,61 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
try: try:
# make a POST request to the API endpoint, stream=True # make a POST request to the API endpoint, stream=True
from .bridge_all import model_info from .bridge_all import model_info
anthropic = Anthropic(api_key=ANTHROPIC_API_KEY, base_url=model_info[llm_kwargs['llm_model']]['endpoint']) endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
# endpoint = model_info[llm_kwargs['llm_model']]['endpoint'] response = requests.post(endpoint, headers=headers, json=message,
# with ProxyNetworkActivate() proxies=proxies, stream=True, timeout=TIMEOUT_SECONDS);break
stream = anthropic.messages.create( except requests.exceptions.ReadTimeout as e:
messages=message,
max_tokens=4096, # The maximum number of tokens to generate before stopping.
model=llm_kwargs['llm_model'],
stream=True,
temperature = llm_kwargs['temperature'],
system=system_prompt
)
break
except:
retry += 1 retry += 1
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg)) traceback.print_exc()
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
if retry > MAX_RETRY: raise TimeoutError if retry > MAX_RETRY: raise TimeoutError
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
stream_response = response.iter_lines()
gpt_replying_buffer = "" gpt_replying_buffer = ""
for completion in stream: while True:
if completion.type == "message_start" or completion.type == "content_block_start": try: chunk = next(stream_response)
continue except StopIteration:
elif completion.type == "message_stop" or completion.type == "content_block_stop" or completion.type == "message_delta":
break break
try: except requests.exceptions.ConnectionError:
gpt_replying_buffer = gpt_replying_buffer + completion.delta.text chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
history[-1] = gpt_replying_buffer need_to_pass, chunkjson, is_last_chunk = decode_chunk(chunk)
chatbot[-1] = (history[-2], history[-1]) if chunk:
yield from update_ui(chatbot=chatbot, history=history, msg='正常') # 刷新界面 try:
if need_to_pass:
pass
elif is_last_chunk:
logging.info(f'[response] {gpt_replying_buffer}')
break
else:
if chunkjson and chunkjson['type'] == 'content_block_delta':
gpt_replying_buffer += chunkjson['delta']['text']
history[-1] = gpt_replying_buffer
chatbot[-1] = (history[-2], history[-1])
yield from update_ui(chatbot=chatbot, history=history, msg='正常') # 刷新界面
except Exception as e: except Exception as e:
from toolbox import regular_txt_to_markdown chunk = get_full_error(chunk, stream_response)
tb_str = '```\n' + trimmed_format_exc() + '```' chunk_decoded = chunk.decode()
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str}") error_msg = chunk_decoded
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + tb_str) # 刷新界面 print(error_msg)
return raise RuntimeError("Json解析不合常规")
def generate_payload(inputs, llm_kwargs, history, stream, image_paths): def multiple_picture_types(image_paths):
"""
根据图片类型返回image/jpeg, image/png, image/gif, image/webp无法判断则返回image/jpeg
"""
for image_path in image_paths:
if image_path.endswith('.jpeg') or image_path.endswith('.jpg'):
return 'image/jpeg'
elif image_path.endswith('.png'):
return 'image/png'
elif image_path.endswith('.gif'):
return 'image/gif'
elif image_path.endswith('.webp'):
return 'image/webp'
return 'image/jpeg'
def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths):
""" """
整合所有信息选择LLM模型生成http请求为发送请求做准备 整合所有信息选择LLM模型生成http请求为发送请求做准备
""" """
@ -223,19 +273,16 @@ def generate_payload(inputs, llm_kwargs, history, stream, image_paths):
messages[-1]['content'][0]['text'] = what_gpt_answer['content'][0]['text'] messages[-1]['content'][0]['text'] = what_gpt_answer['content'][0]['text']
if any([llm_kwargs['llm_model'] == model for model in Claude_3_Models]) and image_paths: if any([llm_kwargs['llm_model'] == model for model in Claude_3_Models]) and image_paths:
base64_images = []
for image_path in image_paths:
base64_images.append(encode_image(image_path))
what_i_ask_now = {} what_i_ask_now = {}
what_i_ask_now["role"] = "user" what_i_ask_now["role"] = "user"
what_i_ask_now["content"] = [] what_i_ask_now["content"] = []
for base64_image in base64_images: for image_path in image_paths:
what_i_ask_now["content"].append({ what_i_ask_now["content"].append({
"type": "image", "type": "image",
"source": { "source": {
"type": "base64", "type": "base64",
"media_type": "image/jpeg", "media_type": multiple_picture_types(image_paths),
"data": base64_image, "data": encode_image(image_path),
} }
}) })
what_i_ask_now["content"].append({"type": "text", "text": inputs}) what_i_ask_now["content"].append({"type": "text", "text": inputs})
@ -244,4 +291,18 @@ def generate_payload(inputs, llm_kwargs, history, stream, image_paths):
what_i_ask_now["role"] = "user" what_i_ask_now["role"] = "user"
what_i_ask_now["content"] = [{"type": "text", "text": inputs}] what_i_ask_now["content"] = [{"type": "text", "text": inputs}]
messages.append(what_i_ask_now) messages.append(what_i_ask_now)
return messages # 开始整理headers与message
headers = {
'x-api-key': ANTHROPIC_API_KEY,
'anthropic-version': '2023-06-01',
'content-type': 'application/json'
}
payload = {
'model': llm_kwargs['llm_model'],
'max_tokens': 4096,
'messages': messages,
'temperature': llm_kwargs['temperature'],
'stream': True,
'system': system_prompt
}
return headers, payload

View File

@ -0,0 +1,283 @@
# 借鉴自同目录下的bridge_chatgpt.py
"""
该文件中主要包含三个函数
不具备多线程能力的函数
1. predict: 正常对话时使用具备完备的交互功能不可多线程
具备多线程调用能力的函数
2. predict_no_ui_long_connection支持多线程
"""
import json
import time
import gradio as gr
import logging
import traceback
import requests
import importlib
import random
# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件不受git管控如果有则覆盖原config文件
from toolbox import get_conf, update_ui, trimmed_format_exc, is_the_upload_folder, read_one_api_model_name
proxies, TIMEOUT_SECONDS, MAX_RETRY, YIMODEL_API_KEY = \
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'YIMODEL_API_KEY')
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
def get_full_error(chunk, stream_response):
"""
获取完整的从Openai返回的报错
"""
while True:
try:
chunk += next(stream_response)
except:
break
return chunk
def decode_chunk(chunk):
# 提前读取一些信息(用于判断异常)
chunk_decoded = chunk.decode()
chunkjson = None
is_last_chunk = False
try:
chunkjson = json.loads(chunk_decoded[6:])
is_last_chunk = chunkjson.get("lastOne", False)
except:
pass
return chunk_decoded, chunkjson, is_last_chunk
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
"""
发送至chatGPT等待回复一次性完成不显示中间过程但内部用stream的方法避免中途网线被掐
inputs
是本次问询的输入
sys_prompt:
系统静默prompt
llm_kwargs
chatGPT的内部调优参数
history
是之前的对话列表
observe_window = None
用于负责跨越线程传递已经输出的部分大部分时候仅仅为了fancy的视觉效果留空即可observe_window[0]观测窗observe_window[1]看门狗
"""
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
if inputs == "": inputs = "空空如也的输入栏"
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
retry = 0
while True:
try:
# make a POST request to the API endpoint, stream=False
from .bridge_all import model_info
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
response = requests.post(endpoint, headers=headers, proxies=proxies,
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
except requests.exceptions.ReadTimeout as e:
retry += 1
traceback.print_exc()
if retry > MAX_RETRY: raise TimeoutError
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
stream_response = response.iter_lines()
result = ''
is_head_of_the_stream = True
while True:
try: chunk = next(stream_response)
except StopIteration:
break
except requests.exceptions.ConnectionError:
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
chunk_decoded, chunkjson, is_last_chunk = decode_chunk(chunk)
if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r'"role":"assistant"' in chunk_decoded):
# 数据流的第一帧不携带content
is_head_of_the_stream = False; continue
if chunk:
try:
if is_last_chunk:
# 判定为数据流的结束gpt_replying_buffer也写完了
logging.info(f'[response] {result}')
break
result += chunkjson['choices'][0]["delta"]["content"]
if not console_slience: print(chunkjson['choices'][0]["delta"]["content"], end='')
if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1:
observe_window[0] += chunkjson['choices'][0]["delta"]["content"]
# 看门狗,如果超过期限没有喂狗,则终止
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("用户取消了程序。")
except Exception as e:
chunk = get_full_error(chunk, stream_response)
chunk_decoded = chunk.decode()
error_msg = chunk_decoded
print(error_msg)
raise RuntimeError("Json解析不合常规")
return result
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
发送至chatGPT流式获取输出
用于基础的对话功能
inputs 是本次问询的输入
top_p, temperature是chatGPT的内部调优参数
history 是之前的对话列表注意无论是inputs还是history内容太长了都会触发token数量溢出的错误
chatbot 为WebUI中显示的对话列表修改它然后yeild出去可以直接修改对话界面内容
additional_fn代表点击的哪个按钮按钮见functional.py
"""
if len(YIMODEL_API_KEY) == 0:
raise RuntimeError("没有设置YIMODEL_API_KEY选项")
if inputs == "": inputs = "空空如也的输入栏"
user_input = inputs
if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
raw_input = inputs
logging.info(f'[raw_input] {raw_input}')
chatbot.append((inputs, ""))
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
# check mis-behavior
if is_the_upload_folder(user_input):
chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。")
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
time.sleep(2)
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
from .bridge_all import model_info
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
history.append(inputs); history.append("")
retry = 0
while True:
try:
# make a POST request to the API endpoint, stream=True
response = requests.post(endpoint, headers=headers, proxies=proxies,
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
except:
retry += 1
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
if retry > MAX_RETRY: raise TimeoutError
gpt_replying_buffer = ""
is_head_of_the_stream = True
if stream:
stream_response = response.iter_lines()
while True:
try:
chunk = next(stream_response)
except StopIteration:
break
except requests.exceptions.ConnectionError:
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
# 提前读取一些信息 (用于判断异常)
chunk_decoded, chunkjson, is_last_chunk = decode_chunk(chunk)
if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r'"role":"assistant"' in chunk_decoded):
# 数据流的第一帧不携带content
is_head_of_the_stream = False; continue
if chunk:
try:
if is_last_chunk:
# 判定为数据流的结束gpt_replying_buffer也写完了
logging.info(f'[response] {gpt_replying_buffer}')
break
# 处理数据流的主体
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
# 如果这里抛出异常一般是文本过长详情见get_full_error的输出
history[-1] = gpt_replying_buffer
chatbot[-1] = (history[-2], history[-1])
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
except Exception as e:
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
chunk = get_full_error(chunk, stream_response)
chunk_decoded = chunk.decode()
error_msg = chunk_decoded
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
print(error_msg)
return
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
from .bridge_all import model_info
if "bad_request" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] 已经超过了模型的最大上下文或是模型格式错误,请尝试削减单次输入的文本量。")
elif "authentication_error" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. 请确保API key有效。")
elif "not_found" in error_msg:
chatbot[-1] = (chatbot[-1][0], f"[Local Message] {llm_kwargs['llm_model']} 无效,请确保使用小写的模型名称。")
elif "rate_limit" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] 遇到了控制请求速率限制,请一分钟后重试。")
elif "system_busy" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] 系统繁忙,请一分钟后重试。")
else:
from toolbox import regular_txt_to_markdown
tb_str = '```\n' + trimmed_format_exc() + '```'
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
return chatbot, history
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
"""
整合所有信息选择LLM模型生成http请求为发送请求做准备
"""
api_key = f"Bearer {YIMODEL_API_KEY}"
headers = {
"Content-Type": "application/json",
"Authorization": api_key
}
conversation_cnt = len(history) // 2
messages = [{"role": "system", "content": system_prompt}]
if conversation_cnt:
for index in range(0, 2*conversation_cnt, 2):
what_i_have_asked = {}
what_i_have_asked["role"] = "user"
what_i_have_asked["content"] = history[index]
what_gpt_answer = {}
what_gpt_answer["role"] = "assistant"
what_gpt_answer["content"] = history[index+1]
if what_i_have_asked["content"] != "":
if what_gpt_answer["content"] == "": continue
if what_gpt_answer["content"] == timeout_bot_msg: continue
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
else:
messages[-1]['content'] = what_gpt_answer['content']
what_i_ask_now = {}
what_i_ask_now["role"] = "user"
what_i_ask_now["content"] = inputs
messages.append(what_i_ask_now)
model = llm_kwargs['llm_model']
if llm_kwargs['llm_model'].startswith('one-api-'):
model = llm_kwargs['llm_model'][len('one-api-'):]
model, _ = read_one_api_model_name(model)
tokens = 600 if llm_kwargs['llm_model'] == 'yi-34b-chat-0205' else 4096 #yi-34b-chat-0205只有4k上下文...
payload = {
"model": model,
"messages": messages,
"temperature": llm_kwargs['temperature'], # 1.0,
"stream": stream,
"max_tokens": tokens
}
try:
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
except:
print('输入中可能存在乱码。')
return headers,payload