提升稳定性

This commit is contained in:
qingxu fu 2023-04-09 18:59:43 +08:00
parent 91d07c329a
commit e6cf5532a9
10 changed files with 387 additions and 111 deletions

View File

@ -29,7 +29,7 @@ def get_crazy_functions():
"Color": "stop", # 按钮颜色
"Function": HotReload(解析一个C项目的头文件)
},
"解析整个C++项目(.cpp/.h": {
"解析整个C++项目(.cpp/.hpp/.c/.h": {
"Color": "stop", # 按钮颜色
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(解析一个C项目)

View File

@ -0,0 +1,70 @@
from request_llm.bridge_chatgpt import predict_no_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
fast_debug = False
def 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
import time, glob, os
print('begin analysis on:', file_manifest)
for index, fp in enumerate(file_manifest):
with open(fp, 'r', encoding='utf-8') as f:
file_content = f.read()
prefix = "接下来请你逐文件分析下面的论文文件,概括其内容" if index==0 else ""
i_say = prefix + f'请对下面的文章片段用中文做一个概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{file_content}```'
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
print('[1] yield chatbot, history')
yield chatbot, history, '正常'
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
print('[2] end gpt req')
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
print('[3] yield chatbot, history')
yield chatbot, history, msg
print('[4] next')
if not fast_debug: time.sleep(2)
all_file = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(file_manifest)])
i_say = f'根据以上你自己的分析,对全文进行概括,用学术性语言写一段中文摘要,然后再写一段英文摘要(包括{all_file})。'
chatbot.append((i_say, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature, history=history) # 带超时倒计时
chatbot[-1] = (i_say, gpt_say)
history.append(i_say); history.append(gpt_say)
yield chatbot, history, msg
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res))
yield chatbot, history, msg
@CatchException
def 读文章写摘要(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] # + \
# [f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)] + \
# [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield chatbot, history, '正常'
return
yield from 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)

View File

@ -1,19 +1,115 @@
import traceback
from toolbox import update_ui
def request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, top_p, temperature, chatbot, history, sys_prompt, refresh_interval=0.2):
def input_clipping(inputs, history, max_token_limit):
import tiktoken
import numpy as np
from toolbox import get_conf
enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
def get_token_num(txt): return len(enc.encode(txt))
mode = 'input-and-history'
# 当 输入部分的token占比 小于 全文的一半时,只裁剪历史
input_token_num = get_token_num(inputs)
if input_token_num < max_token_limit//2:
mode = 'only-history'
max_token_limit = max_token_limit - input_token_num
everything = [inputs] if mode == 'input-and-history' else ['']
everything.extend(history)
n_token = get_token_num('\n'.join(everything))
everything_token = [get_token_num(e) for e in everything]
delta = max(everything_token) // 16 # 截断时的颗粒度
while n_token > max_token_limit:
where = np.argmax(everything_token)
encoded = enc.encode(everything[where])
clipped_encoded = encoded[:len(encoded)-delta]
everything[where] = enc.decode(clipped_encoded)[:-1] # -1 to remove the may-be illegal char
everything_token[where] = get_token_num(everything[where])
n_token = get_token_num('\n'.join(everything))
if mode == 'input-and-history':
inputs = everything[0]
else:
pass
history = everything[1:]
return inputs, history
def request_gpt_model_in_new_thread_with_ui_alive(
inputs, inputs_show_user, top_p, temperature,
chatbot, history, sys_prompt, refresh_interval=0.2,
handle_token_exceed=True,
retry_times_at_unknown_error=2,
):
"""
Request GPT model请求GPT模型同时维持用户界面活跃
输入参数 Args 以_array结尾的输入变量都是列表列表长度为子任务的数量执行时会把列表拆解放到每个子线程中分别执行:
inputs (string): List of inputs 输入
inputs_show_user (string): List of inputs to show user展现在报告中的输入借助此参数在汇总报告中隐藏啰嗦的真实输入增强报告的可读性
top_p (float): Top p value for sampling from model distribution GPT参数浮点数
temperature (float): Temperature value for sampling from model distributionGPT参数浮点数
chatbot: chatbot inputs and outputs 用户界面对话窗口句柄用于数据流可视化
history (list): List of chat history 历史对话历史列表
sys_prompt (string): List of system prompts 系统输入列表用于输入给GPT的前提提示比如你是翻译官怎样怎样
refresh_interval (float, optional): Refresh interval for UI (default: 0.2) 刷新时间间隔频率建议低于1不可高于3仅仅服务于视觉效果
handle_token_exceed是否自动处理token溢出的情况如果选择自动处理则会在溢出时暴力截断默认开启
retry_times_at_unknown_error失败时的重试次数
输出 Returns:
future: 输出GPT返回的结果
"""
import time
from concurrent.futures import ThreadPoolExecutor
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
# 用户反馈
chatbot.append([inputs_show_user, ""])
msg = '正常'
yield chatbot, [], msg
yield from update_ui(chatbot=chatbot, history=[])
executor = ThreadPoolExecutor(max_workers=16)
mutable = ["", time.time()]
future = executor.submit(lambda:
predict_no_ui_long_connection(
inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable)
)
def _req_gpt(inputs, history, sys_prompt):
retry_op = retry_times_at_unknown_error
exceeded_cnt = 0
while True:
try:
# 【第一种情况】:顺利完成
result = predict_no_ui_long_connection(
inputs=inputs, top_p=top_p, temperature=temperature,
history=history, sys_prompt=sys_prompt, observe_window=mutable)
return result
except ConnectionAbortedError as token_exceeded_error:
# 【第二种情况】Token溢出
if handle_token_exceed:
exceeded_cnt += 1
# 【选择处理】 尝试计算比例,尽可能多地保留文本
from toolbox import get_reduce_token_percent
p_ratio, n_exceed = get_reduce_token_percent(str(token_exceeded_error))
MAX_TOKEN = 4096
EXCEED_ALLO = 512 + 512 * exceeded_cnt
inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN-EXCEED_ALLO)
mutable[0] += f'[Local Message] 警告文本过长将进行截断Token溢出数{n_exceed}\n\n'
continue # 返回重试
else:
# 【选择放弃】
tb_str = '```\n' + traceback.format_exc() + '```'
mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n"
return mutable[0] # 放弃
except:
# 【第三种情况】:其他错误
tb_str = '```\n' + traceback.format_exc() + '```'
mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n"
if retry_op > 0:
retry_op -= 1
mutable[0] += f"[Local Message] 重试中 {retry_times_at_unknown_error-retry_op}/{retry_times_at_unknown_error}\n\n"
time.sleep(5)
continue # 返回重试
else:
time.sleep(5)
return mutable[0] # 放弃
future = executor.submit(_req_gpt, inputs, history, sys_prompt)
while True:
# yield一次以刷新前端页面
time.sleep(refresh_interval)
@ -27,8 +123,42 @@ def request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, top_
return future.result()
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inputs_array, inputs_show_user_array, top_p, temperature, chatbot, history_array, sys_prompt_array, refresh_interval=0.2, max_workers=10, scroller_max_len=30):
import time
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array, inputs_show_user_array, top_p, temperature,
chatbot, history_array, sys_prompt_array,
refresh_interval=0.2, max_workers=10, scroller_max_len=30,
handle_token_exceed=True, show_user_at_complete=False,
retry_times_at_unknown_error=2,
):
"""
Request GPT model using multiple threads with UI and high efficiency
请求GPT模型的[多线程]
具备以下功能
实时在UI上反馈远程数据流
使用线程池可调节线程池的大小避免openai的流量限制错误
处理中途中止的情况
网络等出问题时会把traceback和已经接收的数据转入输出
输入参数 Args 以_array结尾的输入变量都是列表列表长度为子任务的数量执行时会把列表拆解放到每个子线程中分别执行:
inputs_array (list): List of inputs 每个子任务的输入
inputs_show_user_array (list): List of inputs to show user每个子任务展现在报告中的输入借助此参数在汇总报告中隐藏啰嗦的真实输入增强报告的可读性
top_p (float): Top p value for sampling from model distribution GPT参数浮点数
temperature (float): Temperature value for sampling from model distributionGPT参数浮点数
chatbot: chatbot 用户界面对话窗口句柄用于数据流可视化
history_array (list): List of chat history 历史对话输入双层列表第一层列表是子任务分解第二层列表是对话历史
sys_prompt_array (list): List of system prompts 系统输入列表用于输入给GPT的前提提示比如你是翻译官怎样怎样
refresh_interval (float, optional): Refresh interval for UI (default: 0.2) 刷新时间间隔频率建议低于1不可高于3仅仅服务于视觉效果
max_workers (int, optional): Maximum number of threads (default: 10) 最大线程数如果子任务非常多需要用此选项防止高频地请求openai导致错误
scroller_max_len (int, optional): Maximum length for scroller (default: 30)数据流的显示最后收到的多少个字符仅仅服务于视觉效果
handle_token_exceed (bool, optional): 是否在输入过长时自动缩减文本
handle_token_exceed是否自动处理token溢出的情况如果选择自动处理则会在溢出时暴力截断默认开启
show_user_at_complete (bool, optional): (在结束时把完整输入-输出结果显示在聊天框)
retry_times_at_unknown_error子任务失败时的重试次数
输出 Returns:
list: List of GPT model responses 每个子任务的输出汇总如果某个子任务出错response中会携带traceback报错信息方便调试和定位问题
"""
import time, random
from concurrent.futures import ThreadPoolExecutor
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
assert len(inputs_array) == len(history_array)
@ -40,20 +170,61 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inp
msg = '正常'
yield chatbot, [], msg
# 异步原子
mutable = [["", time.time()] for _ in range(n_frag)]
mutable = [["", time.time(), "等待中"] for _ in range(n_frag)]
def _req_gpt(index, inputs, history, sys_prompt):
try:
gpt_say = predict_no_ui_long_connection(
inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[index]
)
except:
# 收拾残局
tb_str = '```\n' + traceback.format_exc() + '```'
gpt_say = f"[Local Message] 线程{index}在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n"
if len(mutable[index][0]) > 0:
gpt_say += "此线程失败前收到的回答:" + mutable[index][0]
return gpt_say
gpt_say = ""
retry_op = retry_times_at_unknown_error
exceeded_cnt = 0
mutable[index][2] = "执行中"
while True:
try:
# 【第一种情况】:顺利完成
# time.sleep(10); raise RuntimeError("测试")
gpt_say = predict_no_ui_long_connection(
inputs=inputs, top_p=top_p, temperature=temperature, history=history,
sys_prompt=sys_prompt, observe_window=mutable[index], console_slience=True
)
mutable[index][2] = "已成功"
return gpt_say
except ConnectionAbortedError as token_exceeded_error:
# 【第二种情况】Token溢出
if handle_token_exceed:
exceeded_cnt += 1
# 【选择处理】 尝试计算比例,尽可能多地保留文本
from toolbox import get_reduce_token_percent
p_ratio, n_exceed = get_reduce_token_percent(str(token_exceeded_error))
MAX_TOKEN = 4096
EXCEED_ALLO = 512 + 512 * exceeded_cnt
inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN-EXCEED_ALLO)
gpt_say += f'[Local Message] 警告文本过长将进行截断Token溢出数{n_exceed}\n\n'
mutable[index][2] = f"截断重试"
continue # 返回重试
else:
# 【选择放弃】
tb_str = '```\n' + traceback.format_exc() + '```'
gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n"
if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0]
mutable[index][2] = "输入过长已放弃"
return gpt_say # 放弃
except:
# 【第三种情况】:其他错误
tb_str = '```\n' + traceback.format_exc() + '```'
gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n"
if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0]
if retry_op > 0:
retry_op -= 1
wait = random.randint(5, 20)
for i in range(wait):# 也许等待十几秒后,情况会好转
mutable[index][2] = f"等待重试 {wait-i}"; time.sleep(1)
mutable[index][2] = f"重试中 {retry_times_at_unknown_error-retry_op}/{retry_times_at_unknown_error}"
continue # 返回重试
else:
mutable[index][2] = "已失败"
wait = 5
time.sleep(5)
return gpt_say # 放弃
# 异步任务开始
futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(
range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
@ -68,6 +239,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inp
break
# 更好的UI视觉效果
observe_win = []
# print([mutable[thread_index][2] for thread_index, _ in enumerate(worker_done)])
# 每个线程都要“喂狗”(看门狗)
for thread_index, _ in enumerate(worker_done):
mutable[thread_index][1] = time.time()
@ -77,10 +249,10 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inp
replace('\n', '').replace('```', '...').replace(
' ', '.').replace('<br/>', '.....').replace('$', '.')+"`... ]"
observe_win.append(print_something_really_funny)
stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(
worker_done, observe_win)])
chatbot[-1] = [chatbot[-1][0],
f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt % 10+1))]
stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n'
if not done else f'`{mutable[thread_index][2]}`\n\n'
for thread_index, done, obs in zip(range(len(worker_done)), worker_done, observe_win)])
chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt % 10+1))]
msg = "正常"
yield chatbot, [], msg
# 异步任务结束
@ -88,9 +260,38 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inp
for inputs_show_user, f in zip(inputs_show_user_array, futures):
gpt_res = f.result()
gpt_response_collection.extend([inputs_show_user, gpt_res])
if show_user_at_complete:
for inputs_show_user, f in zip(inputs_show_user_array, futures):
gpt_res = f.result()
chatbot.append([inputs_show_user, gpt_res])
yield chatbot, [], msg
time.sleep(1)
return gpt_response_collection
def WithRetry(f):
"""
装饰器函数用于自动重试
"""
def decorated(retry, res_when_fail, *args, **kwargs):
assert retry >= 0
while True:
try:
res = yield from f(*args, **kwargs)
return res
except:
retry -= 1
if retry<0:
print("达到最大重试次数")
break
else:
print("重试中……")
continue
return res_when_fail
return decorated
def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
def cut(txt_tocut, must_break_at_empty_line): # 递归
if get_token_fn(txt_tocut) <= limit:

View File

@ -58,11 +58,10 @@ def 全项目切换英文(txt, top_p, temperature, chatbot, history, sys_prompt,
# 第5步Token限制下的截断与处理
MAX_TOKEN = 3000
from transformers import GPT2TokenizerFast
print('加载tokenizer中')
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
get_token_fn = lambda txt: len(tokenizer(txt)["input_ids"])
print('加载tokenizer结束')
import tiktoken
from toolbox import get_conf
enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
def get_token_fn(txt): return len(enc.encode(txt))
# 第6步任务函数

View File

@ -148,7 +148,8 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor
file_content, page_one = read_and_clean_pdf_text(fp)
# 递归地切割PDF文件
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
enc = tiktoken.get_encoding("gpt2")
from toolbox import get_conf
enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
def get_token_num(txt): return len(enc.encode(txt))
# 分解文本
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(

View File

@ -2,92 +2,96 @@ from request_llm.bridge_chatgpt import predict_no_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
fast_debug = False
def 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
import time, glob, os
print('begin analysis on:', file_manifest)
def 解析源代码新(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
import os, copy
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, WithRetry
msg = '正常'
inputs_array = []
inputs_show_user_array = []
history_array = []
sys_prompt_array = []
report_part_1 = []
############################## <第一步,逐个文件分析,多线程> ##################################
for index, fp in enumerate(file_manifest):
with open(fp, 'r', encoding='utf-8') as f:
file_content = f.read()
prefix = "接下来请你逐文件分析下面的工程" if index==0 else ""
i_say = prefix + f'请对下面的程序文件做一个概述文件名是{os.path.relpath(fp, project_folder)},文件代码是 ```{file_content}```'
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的程序文件做一个概述: {os.path.abspath(fp)}'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
# 装载请求内容
inputs_array.append(i_say)
inputs_show_user_array.append(i_say_show_user)
history_array.append([])
sys_prompt_array.append("你是一个程序架构分析师,正在分析一个源代码项目。你的回答必须简单明了。")
if not fast_debug:
msg = '正常'
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array = inputs_array,
inputs_show_user_array = inputs_show_user_array,
history_array = history_array,
sys_prompt_array = sys_prompt_array,
top_p = top_p,
temperature = temperature,
chatbot = chatbot,
show_user_at_complete = True
)
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
report_part_1 = copy.deepcopy(gpt_response_collection)
history_to_return = report_part_1
res = write_results_to_file(report_part_1)
chatbot.append(("完成?", "逐个文件分析已完成。" + res + "\n\n正在开始汇总。"))
yield chatbot, history_to_return, msg
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
yield chatbot, history, msg
if not fast_debug: time.sleep(2)
all_file = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(file_manifest)])
i_say = f'根据以上你自己的分析对程序的整体功能和构架做出概括。然后用一张markdown表格整理每个文件的功能包括{all_file})。'
chatbot.append((i_say, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature, history=history) # 带超时倒计时
chatbot[-1] = (i_say, gpt_say)
history.append(i_say); history.append(gpt_say)
yield chatbot, history, msg
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res))
yield chatbot, history, msg
############################## <第二步,综合,单线程,分组+迭代处理> ##################################
batchsize = 16 # 10个文件为一组
report_part_2 = []
previous_iteration_files = []
while True:
if len(file_manifest) == 0: break
this_iteration_file_manifest = file_manifest[:batchsize]
this_iteration_gpt_response_collection = gpt_response_collection[:batchsize*2]
file_rel_path = [os.path.relpath(fp, project_folder) for index, fp in enumerate(this_iteration_file_manifest)]
# 把“请对下面的程序文件做一个概述” 替换成 精简的 "文件名:{all_file[index]}"
for index, content in enumerate(this_iteration_gpt_response_collection):
if index%2==0: this_iteration_gpt_response_collection[index] = f"文件名:{file_rel_path[index//2]}"
previous_iteration_files.extend([os.path.relpath(fp, project_folder) for index, fp in enumerate(this_iteration_file_manifest)])
previous_iteration_files_string = ', '.join(previous_iteration_files)
current_iteration_focus = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(this_iteration_file_manifest)])
i_say = f'根据以上分析对程序的整体功能和构架重新做出概括。然后用一张markdown表格整理每个文件的功能包括{previous_iteration_files_string})。'
inputs_show_user = f'根据以上分析,对程序的整体功能和构架重新做出概括,由于输入长度限制,可能需要分组处理,本组文件为 {current_iteration_focus} + 已经汇总的文件组。'
this_iteration_history = copy.deepcopy(this_iteration_gpt_response_collection)
this_iteration_history.extend(report_part_2)
result = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=inputs_show_user, top_p=top_p, temperature=temperature, chatbot=chatbot,
history=this_iteration_history, # 迭代之前的分析
sys_prompt="你是一个程序架构分析师,正在分析一个源代码项目。")
report_part_2.extend([i_say, result])
file_manifest = file_manifest[batchsize:]
gpt_response_collection = gpt_response_collection[batchsize*2:]
############################## <END> ##################################
history_to_return.extend(report_part_2)
res = write_results_to_file(history_to_return)
chatbot.append(("完成了吗?", res))
yield chatbot, history_to_return, msg
@CatchException
def 解析项目本身(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
history = [] # 清空历史,以免输入溢出
import time, glob, os
import glob
file_manifest = [f for f in glob.glob('./*.py') if ('test_project' not in f) and ('gpt_log' not in f)] + \
[f for f in glob.glob('./crazy_functions/*.py') if ('test_project' not in f) and ('gpt_log' not in f)]
for index, fp in enumerate(file_manifest):
# if 'test_project' in fp: continue
with open(fp, 'r', encoding='utf-8') as f:
file_content = f.read()
prefix = "接下来请你分析自己的程序构成,别紧张," if index==0 else ""
i_say = prefix + f'请对下面的程序文件做一个概述文件名是{fp},文件代码是 ```{file_content}```'
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的程序文件做一个概述: {os.path.abspath(fp)}'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
if not fast_debug:
# ** gpt request **
# gpt_say = predict_no_ui(inputs=i_say, top_p=top_p, temperature=temperature)
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[], long_connection=True) # 带超时倒计时
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
yield chatbot, history, '正常'
time.sleep(2)
i_say = f'根据以上你自己的分析对程序的整体功能和构架做出概括。然后用一张markdown表格整理每个文件的功能包括{file_manifest})。'
chatbot.append((i_say, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
if not fast_debug:
# ** gpt request **
# gpt_say = predict_no_ui(inputs=i_say, top_p=top_p, temperature=temperature, history=history)
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature, history=history, long_connection=True) # 带超时倒计时
chatbot[-1] = (i_say, gpt_say)
history.append(i_say); history.append(gpt_say)
yield chatbot, history, '正常'
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res))
[f for f in glob.glob('./crazy_functions/*.py') if ('test_project' not in f) and ('gpt_log' not in f)]+ \
[f for f in glob.glob('./request_llm/*.py') if ('test_project' not in f) and ('gpt_log' not in f)]
project_folder = './'
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何python文件: {txt}")
yield chatbot, history, '正常'
return
yield from 解析源代码新(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
@CatchException
def 解析一个Python项目(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
@ -105,7 +109,7 @@ def 解析一个Python项目(txt, top_p, temperature, chatbot, history, systemPr
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何python文件: {txt}")
yield chatbot, history, '正常'
return
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
@CatchException
@ -126,7 +130,7 @@ def 解析一个C项目的头文件(txt, top_p, temperature, chatbot, history, s
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.h头文件: {txt}")
yield chatbot, history, '正常'
return
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
@CatchException
def 解析一个C项目(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
@ -147,7 +151,7 @@ def 解析一个C项目(txt, top_p, temperature, chatbot, history, systemPromptT
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.h头文件: {txt}")
yield chatbot, history, '正常'
return
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
@CatchException
@ -169,7 +173,7 @@ def 解析一个Java项目(txt, top_p, temperature, chatbot, history, systemProm
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何java文件: {txt}")
yield chatbot, history, '正常'
return
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
@CatchException
@ -192,7 +196,7 @@ def 解析一个Rect项目(txt, top_p, temperature, chatbot, history, systemProm
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何Rect文件: {txt}")
yield chatbot, history, '正常'
return
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
@CatchException
@ -211,4 +215,4 @@ def 解析一个Golang项目(txt, top_p, temperature, chatbot, history, systemPr
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何golang文件: {txt}")
yield chatbot, history, '正常'
return
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)

BIN
objdump.tmp Normal file

Binary file not shown.

View File

@ -72,7 +72,7 @@ def predict_no_ui(inputs, top_p, temperature, history=[], sys_prompt=""):
raise ConnectionAbortedError("Json解析不合常规可能是文本过长" + response.text)
def predict_no_ui_long_connection(inputs, top_p, temperature, history=[], sys_prompt="", observe_window=None):
def predict_no_ui_long_connection(inputs, top_p, temperature, history=[], sys_prompt="", observe_window=None, console_slience=False):
"""
发送至chatGPT等待回复一次性完成不显示中间过程但内部用stream的方法避免中途网线被掐
inputs
@ -121,7 +121,7 @@ def predict_no_ui_long_connection(inputs, top_p, temperature, history=[], sys_pr
if "role" in delta: continue
if "content" in delta:
result += delta["content"]
print(delta["content"], end='')
if not console_slience: print(delta["content"], end='')
if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1: observe_window[0] += delta["content"]
@ -264,8 +264,7 @@ def generate_payload(inputs, top_p, temperature, history, system_prompt, stream)
"presence_penalty": 0,
"frequency_penalty": 0,
}
print(f" {LLM_MODEL} : {conversation_cnt} : {inputs}")
print(f" {LLM_MODEL} : {conversation_cnt} : {inputs[:100]}")
return headers,payload

View File

@ -21,6 +21,8 @@ def ArgsGeneralWrapper(f):
yield from f(txt_passon, *args, **kwargs)
return decorated
def update_ui(chatbot, history, msg='正常', *args, **kwargs):
yield chatbot, history, msg
def get_reduce_token_percent(text):
try:

View File

@ -1,5 +1,5 @@
{
"version": 2.5,
"version": 2.6,
"show_feature": true,
"new_feature": "新增一键更新程序<->高亮代码<->高亮公式<->新增垂直布局选项"
"new_feature": "增强多线程稳定性涉及代码解析、PDF翻译等<->修复Token计数错误解决PDF翻译的分割不合理的问题"
}