diff --git a/crazy_functions/crazy_utils.py b/crazy_functions/crazy_utils.py
index 49732f3..a455cff 100644
--- a/crazy_functions/crazy_utils.py
+++ b/crazy_functions/crazy_utils.py
@@ -1,6 +1,79 @@
+def request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, top_p, temperature, chatbot, history, sys_prompt, refresh_interval=0.2):
+ import time
+ from concurrent.futures import ThreadPoolExecutor
+ from request_llm.bridge_chatgpt import predict_no_ui_long_connection
+ # 用户反馈
+ chatbot.append([inputs_show_user, ""]); msg = '正常'
+ yield chatbot, [], msg
+ executor = ThreadPoolExecutor(max_workers=16)
+ mutable = ["", time.time()]
+ future = executor.submit(lambda:
+ predict_no_ui_long_connection(inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable)
+ )
+ while True:
+ # yield一次以刷新前端页面
+ time.sleep(refresh_interval)
+ # “喂狗”(看门狗)
+ mutable[1] = time.time()
+ if future.done(): break
+ chatbot[-1] = [chatbot[-1][0], mutable[0]]; msg = "正常"
+ yield chatbot, [], msg
+ return future.result()
+
+
+
+
+def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inputs_array, inputs_show_user_array, top_p, temperature, chatbot, history_array, sys_prompt_array, refresh_interval=0.2, max_workers=10, scroller_max_len=30):
+ import time
+ from concurrent.futures import ThreadPoolExecutor
+ from request_llm.bridge_chatgpt import predict_no_ui_long_connection
+ assert len(inputs_array) == len(history_array)
+ assert len(inputs_array) == len(sys_prompt_array)
+ executor = ThreadPoolExecutor(max_workers=max_workers)
+ n_frag = len(inputs_array)
+ # 用户反馈
+ chatbot.append(["请开始多线程操作。", ""]); msg = '正常'
+ yield chatbot, [], msg
+ # 异步原子
+ mutable = [["", time.time()] for _ in range(n_frag)]
+ def _req_gpt(index, inputs, history, sys_prompt):
+ gpt_say = predict_no_ui_long_connection(
+ inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[index]
+ )
+ return gpt_say
+ # 异步任务开始
+ futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
+ cnt = 0
+ while True:
+ # yield一次以刷新前端页面
+ time.sleep(refresh_interval); cnt += 1
+ worker_done = [h.done() for h in futures]
+ if all(worker_done): executor.shutdown(); break
+ # 更好的UI视觉效果
+ observe_win = []
+ # 每个线程都要“喂狗”(看门狗)
+ for thread_index, _ in enumerate(worker_done): mutable[thread_index][1] = time.time()
+ # 在前端打印些好玩的东西
+ for thread_index, _ in enumerate(worker_done):
+ print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\
+ replace('\n','').replace('```','...').replace(' ','.').replace('
','.....').replace('$','.')+"`... ]"
+ observe_win.append(print_something_really_funny)
+ stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(worker_done, observe_win)])
+ chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt%10+1))]; msg = "正常"
+ yield chatbot, [], msg
+ # 异步任务结束
+ gpt_response_collection = []
+ for inputs_show_user, f in zip(inputs_show_user_array, futures):
+ gpt_res = f.result()
+ gpt_response_collection.extend([inputs_show_user, gpt_res])
+ return gpt_response_collection
+
+
+
+
def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
def cut(txt_tocut, must_break_at_empty_line): # 递归
if get_token_fn(txt_tocut) <= limit:
diff --git a/crazy_functions/批量翻译PDF文档_多线程.py b/crazy_functions/批量翻译PDF文档_多线程.py
index ff42e72..e13b072 100644
--- a/crazy_functions/批量翻译PDF文档_多线程.py
+++ b/crazy_functions/批量翻译PDF文档_多线程.py
@@ -1,66 +1,25 @@
-from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
-import re
-import unicodedata
-
-
-def is_paragraph_break(match):
- """
- 根据给定的匹配结果来判断换行符是否表示段落分隔。
- 如果换行符前为句子结束标志(句号,感叹号,问号),且下一个字符为大写字母,则换行符更有可能表示段落分隔。
- 也可以根据之前的内容长度来判断段落是否已经足够长。
- """
- prev_char, next_char = match.groups()
-
- # 句子结束标志
- sentence_endings = ".!?"
-
- # 设定一个最小段落长度阈值
- min_paragraph_length = 140
-
- if prev_char in sentence_endings and next_char.isupper() and len(match.string[:match.start(1)]) > min_paragraph_length:
- return "\n\n"
- else:
- return " "
-
-
-def normalize_text(text):
- """
- 通过把连字(ligatures)等文本特殊符号转换为其基本形式来对文本进行归一化处理。
- 例如,将连字 "fi" 转换为 "f" 和 "i"。
- """
- # 对文本进行归一化处理,分解连字
- normalized_text = unicodedata.normalize("NFKD", text)
-
- # 替换其他特殊字符
- cleaned_text = re.sub(r'[^\x00-\x7F]+', '', normalized_text)
-
- return cleaned_text
-
-
-def clean_text(raw_text):
- """
- 对从 PDF 提取出的原始文本进行清洗和格式化处理。
- 1. 对原始文本进行归一化处理。
- 2. 替换跨行的连词,例如 “Espe-\ncially” 转换为 “Especially”。
- 3. 根据 heuristic 规则判断换行符是否是段落分隔,并相应地进行替换。
- """
- # 对文本进行归一化处理
- normalized_text = normalize_text(raw_text)
-
- # 替换跨行的连词
- text = re.sub(r'(\w+-\n\w+)',
- lambda m: m.group(1).replace('-\n', ''), normalized_text)
-
- # 根据前后相邻字符的特点,找到原文本中的换行符
- newlines = re.compile(r'(\S)\n(\S)')
-
- # 根据 heuristic 规则,用空格或段落分隔符替换原换行符
- final_text = re.sub(newlines, lambda m: m.group(
- 1) + is_paragraph_break(m) + m.group(2), text)
-
- return final_text.strip()
+from toolbox import CatchException, report_execption, write_results_to_file
+from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
+from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
def read_and_clean_pdf_text(fp):
+ """
+ **输入参数说明**
+ - `fp`:需要读取和清理文本的pdf文件路径
+
+ **输出参数说明**
+ - `meta_txt`:清理后的文本内容字符串
+ - `page_one_meta`:第一页清理后的文本内容列表
+
+ **函数功能**
+ 读取pdf文件并清理其中的文本内容,清理规则包括:
+ - 提取所有块元的文本信息,并合并为一个字符串
+ - 去除短块(字符数小于100)并替换为回车符
+ - 清理多余的空行
+ - 合并小写字母开头的段落块并替换为空格
+ - 清除重复的换行
+ - 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔
+ """
import fitz, re
import numpy as np
# file_content = ""
@@ -170,69 +129,7 @@ def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt,
yield from 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt)
-def request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, top_p, temperature, chatbot, history, sys_prompt, refresh_interval=0.2):
- import time
- from concurrent.futures import ThreadPoolExecutor
- from request_llm.bridge_chatgpt import predict_no_ui_long_connection
- # 用户反馈
- chatbot.append([inputs_show_user, ""]); msg = '正常'
- yield chatbot, [], msg
- executor = ThreadPoolExecutor(max_workers=16)
- mutable = ["", time.time()]
- future = executor.submit(lambda:
- predict_no_ui_long_connection(inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable)
- )
- while True:
- # yield一次以刷新前端页面
- time.sleep(refresh_interval)
- # “喂狗”(看门狗)
- mutable[1] = time.time()
- if future.done(): break
- chatbot[-1] = [chatbot[-1][0], mutable[0]]; msg = "正常"
- yield chatbot, [], msg
- return future.result()
-def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inputs_array, inputs_show_user_array, top_p, temperature, chatbot, history_array, sys_prompt_array, refresh_interval=0.2, max_workers=10, scroller_max_len=30):
- import time
- from concurrent.futures import ThreadPoolExecutor
- from request_llm.bridge_chatgpt import predict_no_ui_long_connection
- assert len(inputs_array) == len(history_array)
- assert len(inputs_array) == len(sys_prompt_array)
- executor = ThreadPoolExecutor(max_workers=max_workers)
- n_frag = len(inputs_array)
- # 异步原子
- mutable = [["", time.time()] for _ in range(n_frag)]
- def _req_gpt(index, inputs, history, sys_prompt):
- gpt_say = predict_no_ui_long_connection(
- inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[index]
- )
- return gpt_say
- # 异步任务开始
- futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
- cnt = 0
- while True:
- # yield一次以刷新前端页面
- time.sleep(refresh_interval); cnt += 1
- worker_done = [h.done() for h in futures]
- if all(worker_done): executor.shutdown(); break
- # 更好的UI视觉效果
- observe_win = []
- # 每个线程都要“喂狗”(看门狗)
- for thread_index, _ in enumerate(worker_done): mutable[thread_index][1] = time.time()
- # 在前端打印些好玩的东西
- for thread_index, _ in enumerate(worker_done):
- print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\
- replace('\n','').replace('```','...').replace(' ','.').replace('
','.....').replace('$','.')+"`... ]"
- observe_win.append(print_something_really_funny)
- stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(worker_done, observe_win)])
- chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt%10+1))]; msg = "正常"
- yield chatbot, [], msg
- # 异步任务结束
- gpt_response_collection = []
- for inputs_show_user, f in zip(inputs_show_user_array, futures):
- gpt_res = f.result()
- gpt_response_collection.extend([inputs_show_user, gpt_res])
- return gpt_response_collection
def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt):
import time
@@ -241,7 +138,7 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor
import fitz
import tiktoken
TOKEN_LIMIT_PER_FRAGMENT = 1600
-
+ generated_conclusion_files = []
for index, fp in enumerate(file_manifest):
# 读取PDF文件
file_content, page_one = read_and_clean_pdf_text(fp)
@@ -277,7 +174,19 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor
final = ["", paper_meta_info + '\n\n---\n\n---\n\n---\n\n']
final.extend(gpt_response_collection)
- res = write_results_to_file(final)
+ create_report_file_name = f"{os.path.basename(fp)}.trans.md"
+ res = write_results_to_file(final, file_name=create_report_file_name)
+ generated_conclusion_files.append(f'./gpt_log/{create_report_file_name}')
chatbot.append((f"{fp}完成了吗?", res)); msg = "完成"
yield chatbot, history, msg
+ # 准备文件的下载
+ import shutil
+ for pdf_path in generated_conclusion_files:
+ # 重命名文件
+ rename_file = f'./gpt_log/总结论文-{os.path.basename(pdf_path)}'
+ if os.path.exists(rename_file): os.remove(rename_file)
+ shutil.copyfile(pdf_path, rename_file);
+ if os.path.exists(pdf_path): os.remove(pdf_path)
+ chatbot.append(("给出输出文件清单", str(generated_conclusion_files)))
+ yield chatbot, history, msg
\ No newline at end of file