Merge pull request #204 from Eralien/dev-clean_pdf
feat: clean pdf fitz text
This commit is contained in:
commit
ecebdf3ab5
@ -1,5 +1,5 @@
|
|||||||
from predict import predict_no_ui
|
from predict import predict_no_ui
|
||||||
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
|
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down, clean_text
|
||||||
fast_debug = False
|
fast_debug = False
|
||||||
|
|
||||||
|
|
||||||
@ -11,6 +11,7 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor
|
|||||||
file_content = ""
|
file_content = ""
|
||||||
for page in doc:
|
for page in doc:
|
||||||
file_content += page.get_text()
|
file_content += page.get_text()
|
||||||
|
file_content = clean_text(file_content)
|
||||||
print(file_content)
|
print(file_content)
|
||||||
|
|
||||||
prefix = "接下来请你逐文件分析下面的论文文件,概括其内容" if index==0 else ""
|
prefix = "接下来请你逐文件分析下面的论文文件,概括其内容" if index==0 else ""
|
||||||
@ -58,7 +59,7 @@ def 批量总结PDF文档(txt, top_p, temperature, chatbot, history, systemPromp
|
|||||||
# 基本信息:功能、贡献者
|
# 基本信息:功能、贡献者
|
||||||
chatbot.append([
|
chatbot.append([
|
||||||
"函数插件功能?",
|
"函数插件功能?",
|
||||||
"批量总结PDF文档。函数插件贡献者: ValeriaWong"])
|
"批量总结PDF文档。函数插件贡献者: ValeriaWong,Eralien"])
|
||||||
yield chatbot, history, '正常'
|
yield chatbot, history, '正常'
|
||||||
|
|
||||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||||
|
58
toolbox.py
58
toolbox.py
@ -279,4 +279,60 @@ def clear_line_break(txt):
|
|||||||
txt = txt.replace('\n', ' ')
|
txt = txt.replace('\n', ' ')
|
||||||
txt = txt.replace(' ', ' ')
|
txt = txt.replace(' ', ' ')
|
||||||
txt = txt.replace(' ', ' ')
|
txt = txt.replace(' ', ' ')
|
||||||
return txt
|
return txt
|
||||||
|
|
||||||
|
import re
|
||||||
|
import unicodedata
|
||||||
|
|
||||||
|
def is_paragraph_break(match):
|
||||||
|
"""
|
||||||
|
根据给定的匹配结果来判断换行符是否表示段落分隔。
|
||||||
|
如果换行符前为句子结束标志(句号,感叹号,问号),且下一个字符为大写字母,则换行符更有可能表示段落分隔。
|
||||||
|
也可以根据之前的内容长度来判断段落是否已经足够长。
|
||||||
|
"""
|
||||||
|
prev_char, next_char = match.groups()
|
||||||
|
|
||||||
|
# 句子结束标志
|
||||||
|
sentence_endings = ".!?"
|
||||||
|
|
||||||
|
# 设定一个最小段落长度阈值
|
||||||
|
min_paragraph_length = 140
|
||||||
|
|
||||||
|
if prev_char in sentence_endings and next_char.isupper() and len(match.string[:match.start(1)]) > min_paragraph_length:
|
||||||
|
return "\n\n"
|
||||||
|
else:
|
||||||
|
return " "
|
||||||
|
|
||||||
|
def normalize_text(text):
|
||||||
|
"""
|
||||||
|
通过把连字(ligatures)等文本特殊符号转换为其基本形式来对文本进行归一化处理。
|
||||||
|
例如,将连字 "fi" 转换为 "f" 和 "i"。
|
||||||
|
"""
|
||||||
|
# 对文本进行归一化处理,分解连字
|
||||||
|
normalized_text = unicodedata.normalize("NFKD", text)
|
||||||
|
|
||||||
|
# 替换其他特殊字符
|
||||||
|
cleaned_text = re.sub(r'[^\x00-\x7F]+', '', normalized_text)
|
||||||
|
|
||||||
|
return cleaned_text
|
||||||
|
|
||||||
|
def clean_text(raw_text):
|
||||||
|
"""
|
||||||
|
对从 PDF 提取出的原始文本进行清洗和格式化处理。
|
||||||
|
1. 对原始文本进行归一化处理。
|
||||||
|
2. 替换跨行的连词,例如 “Espe-\ncially” 转换为 “Especially”。
|
||||||
|
3. 根据 heuristic 规则判断换行符是否是段落分隔,并相应地进行替换。
|
||||||
|
"""
|
||||||
|
# 对文本进行归一化处理
|
||||||
|
normalized_text = normalize_text(raw_text)
|
||||||
|
|
||||||
|
# 替换跨行的连词
|
||||||
|
text = re.sub(r'(\w+-\n\w+)', lambda m: m.group(1).replace('-\n', ''), normalized_text)
|
||||||
|
|
||||||
|
# 根据前后相邻字符的特点,找到原文本中的换行符
|
||||||
|
newlines = re.compile(r'(\S)\n(\S)')
|
||||||
|
|
||||||
|
# 根据 heuristic 规则,用空格或段落分隔符替换原换行符
|
||||||
|
final_text = re.sub(newlines, lambda m: m.group(1) + is_paragraph_break(m) + m.group(2), text)
|
||||||
|
|
||||||
|
return final_text.strip()
|
Loading…
x
Reference in New Issue
Block a user