移除陈旧函数

This commit is contained in:
qingxu fu 2023-04-11 14:45:00 +08:00
parent e965c36db3
commit fc331681b4
10 changed files with 114 additions and 61 deletions

View File

@ -1,5 +1,4 @@
from toolbox import update_ui
from request_llm.bridge_chatgpt import predict_no_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down, get_conf
import re, requests, unicodedata, os

View File

@ -1,4 +1,3 @@
from request_llm.bridge_chatgpt import predict_no_ui
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
fast_debug = False

View File

@ -1,4 +1,3 @@
from request_llm.bridge_chatgpt import predict_no_ui
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
import re

View File

@ -1,4 +1,3 @@
from request_llm.bridge_chatgpt import predict_no_ui
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down

View File

@ -2,10 +2,12 @@ from toolbox import CatchException, report_execption, write_results_to_file
from toolbox import update_ui
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from colorful import *
def read_and_clean_pdf_text(fp):
"""
这个函数用于分割pdf用了很多trick逻辑较乱效果奇好不建议任何人去读这个函数
**输入参数说明**
- `fp`需要读取和清理文本的pdf文件路径
@ -22,17 +24,43 @@ def read_and_clean_pdf_text(fp):
- 清除重复的换行
- 将每个换行符替换为两个换行符使每个段落之间有两个换行符分隔
"""
import fitz
import fitz, copy
import re
import numpy as np
fc = 0
fs = 1
fb = 2
REMOVE_FOOT_NOTE = True
REMOVE_FOOT_FFSIZE_PERCENT = 0.95
def primary_ffsize(l):
fsize_statiscs = {}
for wtf in l['spans']:
if wtf['size'] not in fsize_statiscs: fsize_statiscs[wtf['size']] = 0
fsize_statiscs[wtf['size']] += len(wtf['text'])
return max(fsize_statiscs, key=fsize_statiscs.get)
def ffsize_same(a,b):
return abs((a-b)/max(a,b)) < 0.02
# file_content = ""
with fitz.open(fp) as doc:
meta_txt = []
meta_font = []
meta_line = []
meta_span = []
for index, page in enumerate(doc):
# file_content += page.get_text()
text_areas = page.get_text("dict") # 获取页面上的文本信息
for t in text_areas['blocks']:
if 'lines' in t:
pf = 998
for l in t['lines']:
txt_line = "".join([wtf['text'] for wtf in l['spans']])
pf = primary_ffsize(l)
meta_line.append([txt_line, pf, l['bbox'], l])
for wtf in l['spans']: # for l in t['lines']:
meta_span.append([wtf['text'], wtf['size'], len(wtf['text'])])
# meta_line.append(["NEW_BLOCK", pf])
# 块元提取 for each word segment with in line for each line cross-line words for each block
meta_txt.extend([" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
'- ', '') for t in text_areas['blocks'] if 'lines' in t])
@ -41,6 +69,56 @@ def read_and_clean_pdf_text(fp):
if index == 0:
page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
'- ', '') for t in text_areas['blocks'] if 'lines' in t]
# 获取正文主字体
fsize_statiscs = {}
for span in meta_span:
if span[1] not in fsize_statiscs: fsize_statiscs[span[1]] = 0
fsize_statiscs[span[1]] += span[2]
main_fsize = max(fsize_statiscs, key=fsize_statiscs.get)
if REMOVE_FOOT_NOTE:
give_up_fize_threshold = main_fsize * REMOVE_FOOT_FFSIZE_PERCENT
# 切分和重新整合
mega_sec = []
sec = []
for index, line in enumerate(meta_line):
if index == 0:
sec.append(line[fc])
continue
if REMOVE_FOOT_NOTE:
if meta_line[index][fs] <= give_up_fize_threshold:
continue
if ffsize_same(meta_line[index][fs], meta_line[index-1][fs]):
# 尝试识别段落
if meta_line[index][fc].endswith('.') and\
(meta_line[index-1][fc] != 'NEW_BLOCK') and \
(meta_line[index][fb][2] - meta_line[index][fb][0]) < (meta_line[index-1][fb][2] - meta_line[index-1][fb][0]) * 0.7:
sec[-1] += line[fc]
sec[-1] += "\n\n"
else:
sec[-1] += " "
sec[-1] += line[fc]
else:
if (index+1 < len(meta_line)) and \
meta_line[index][fs] > main_fsize:
# 单行 + 字体大
mega_sec.append(copy.deepcopy(sec))
sec = []
sec.append("# " + line[fc])
else:
# 尝试识别section
if meta_line[index-1][fs] > meta_line[index][fs]:
sec.append("\n" + line[fc])
else:
sec.append(line[fc])
mega_sec.append(copy.deepcopy(sec))
finals = []
for ms in mega_sec:
final = " ".join(ms)
final = final.replace('- ', ' ')
finals.append(final)
meta_txt = finals
def 把字符太少的块清除为回车(meta_txt):
for index, block_txt in enumerate(meta_txt):
@ -85,6 +163,10 @@ def read_and_clean_pdf_text(fp):
# 换行 -> 双换行
meta_txt = meta_txt.replace('\n', '\n\n')
for f in finals:
print亮黄(f)
print亮绿('***************************')
return meta_txt, page_one_meta
@ -145,21 +227,23 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
TOKEN_LIMIT_PER_FRAGMENT = 1600
generated_conclusion_files = []
for index, fp in enumerate(file_manifest):
# 读取PDF文件
file_content, page_one = read_and_clean_pdf_text(fp)
# 递归地切割PDF文件
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
from toolbox import get_conf
enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
def get_token_num(txt): return len(enc.encode(txt))
# 分解文本
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
# 为了更好的效果我们剥离Introduction之后的部分
paper_meta = page_one_fragments[0].split('introduction')[0].split(
'Introduction')[0].split('INTRODUCTION')[0]
# 为了更好的效果我们剥离Introduction之后的部分如果有
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
# 单线获取文章meta信息
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=f"以下是一篇学术论文的基础信息请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出最后用中文翻译摘要部分。请提取{paper_meta}",
@ -168,23 +252,32 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
chatbot=chatbot, history=[],
sys_prompt="Your job is to collect information from materials。",
)
# 多线,翻译
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=[
f"以下是你需要翻译的文章段落\n{frag}" for frag in paper_fragments],
inputs_show_user_array=[f"" for _ in paper_fragments],
f"以下是你需要翻译的论文片段\n{frag}" for frag in paper_fragments],
inputs_show_user_array=[f"\n---\n 原文: \n\n {frag.replace('#', '')} \n---\n 翻译:\n " for frag in paper_fragments],
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[[paper_meta] for _ in paper_fragments],
sys_prompt_array=[
"请你作为一个学术翻译,把整个段落翻译成中文,要求语言简洁,禁止重复输出原文。" for _ in paper_fragments],
"请你作为一个学术翻译,负责把学术论文的片段准确翻译成中文。" for _ in paper_fragments],
max_workers=16 # OpenAI所允许的最大并行过载
)
final = ["", paper_meta_info + '\n\n---\n\n---\n\n---\n\n']
# 整理报告的格式
for i,k in enumerate(gpt_response_collection):
if i%2==0:
gpt_response_collection[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection)//2}] \n\n {paper_fragments[i//2].replace('#', '')} \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection)//2}]\n "
else:
gpt_response_collection[i] = gpt_response_collection[i]
final = ["一、论文概况\n\n---\n\n", paper_meta_info.replace('# ', '### ') + '\n\n---\n\n', "二、论文翻译", ""]
final.extend(gpt_response_collection)
create_report_file_name = f"{os.path.basename(fp)}.trans.md"
res = write_results_to_file(final, file_name=create_report_file_name)
# 更新UI
generated_conclusion_files.append(f'./gpt_log/{create_report_file_name}')
chatbot.append((f"{fp}完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=chatbot) # 刷新界面
@ -200,4 +293,4 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
if os.path.exists(pdf_path):
os.remove(pdf_path)
chatbot.append(("给出输出文件清单", str(generated_conclusion_files)))
yield from update_ui(chatbot=chatbot, history=chatbot, msg=msg) # 刷新界面
yield from update_ui(chatbot=chatbot, history=chatbot) # 刷新界面

View File

@ -1,4 +1,3 @@
from request_llm.bridge_chatgpt import predict_no_ui
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
import re

View File

@ -1,4 +1,3 @@
from request_llm.bridge_chatgpt import predict_no_ui
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
fast_debug = False

View File

@ -1,4 +1,3 @@
from request_llm.bridge_chatgpt import predict_no_ui
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
fast_debug = False

View File

@ -39,38 +39,6 @@ def get_full_error(chunk, stream_response):
break
return chunk
def predict_no_ui(inputs, top_p, temperature, history=[], sys_prompt=""):
"""
发送至chatGPT等待回复一次性完成不显示中间过程
predict函数的简化版
用于payload比较大的情况或者用于实现多线带嵌套的复杂功能
inputs 是本次问询的输入
top_p, temperature是chatGPT的内部调优参数
history 是之前的对话列表
注意无论是inputs还是history内容太长了都会触发token数量溢出的错误然后raise ConnectionAbortedError
"""
headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt=sys_prompt, stream=False)
retry = 0
while True:
try:
# make a POST request to the API endpoint, stream=False
response = requests.post(API_URL, headers=headers, proxies=proxies,
json=payload, stream=False, timeout=TIMEOUT_SECONDS*2); break
except requests.exceptions.ReadTimeout as e:
retry += 1
traceback.print_exc()
if retry > MAX_RETRY: raise TimeoutError
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
try:
result = json.loads(response.text)["choices"][0]["message"]["content"]
return result
except Exception as e:
if "choices" not in response.text: print(response.text)
raise ConnectionAbortedError("Json解析不合常规可能是文本过长" + response.text)
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
"""
@ -276,7 +244,10 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
"presence_penalty": 0,
"frequency_penalty": 0,
}
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]}")
try:
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]}")
except:
print('输入中可能存在乱码。')
return headers,payload

View File

@ -87,10 +87,10 @@ def predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temp
top_p, temperature: gpt参数
history: gpt参数 对话历史
sys_prompt: gpt参数 sys_prompt
long_connection: 是否采用更稳定的连接方式推荐
long_connection: 是否采用更稳定的连接方式推荐已弃用
"""
import time
from request_llm.bridge_chatgpt import predict_no_ui, predict_no_ui_long_connection
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
from toolbox import get_conf
TIMEOUT_SECONDS, MAX_RETRY = get_conf('TIMEOUT_SECONDS', 'MAX_RETRY')
# 多线程的时候需要一个mutable结构在不同线程之间传递信息
@ -101,13 +101,9 @@ def predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temp
def mt(i_say, history):
while True:
try:
if long_connection:
mutable[0] = predict_no_ui_long_connection(
inputs=i_say, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt)
else:
mutable[0] = predict_no_ui(
inputs=i_say, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt)
break
mutable[0] = predict_no_ui_long_connection(
inputs=i_say, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt)
except ConnectionAbortedError as token_exceeded_error:
# 尝试计算比例,尽可能多地保留文本
p_ratio, n_exceed = get_reduce_token_percent(