移除陈旧函数
This commit is contained in:
parent
e965c36db3
commit
fc331681b4
@ -1,5 +1,4 @@
|
|||||||
from toolbox import update_ui
|
from toolbox import update_ui
|
||||||
from request_llm.bridge_chatgpt import predict_no_ui
|
|
||||||
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down, get_conf
|
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down, get_conf
|
||||||
import re, requests, unicodedata, os
|
import re, requests, unicodedata, os
|
||||||
|
|
||||||
|
@ -1,4 +1,3 @@
|
|||||||
from request_llm.bridge_chatgpt import predict_no_ui
|
|
||||||
from toolbox import update_ui
|
from toolbox import update_ui
|
||||||
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
|
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
|
||||||
fast_debug = False
|
fast_debug = False
|
||||||
|
@ -1,4 +1,3 @@
|
|||||||
from request_llm.bridge_chatgpt import predict_no_ui
|
|
||||||
from toolbox import update_ui
|
from toolbox import update_ui
|
||||||
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
|
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
|
||||||
import re
|
import re
|
||||||
|
@ -1,4 +1,3 @@
|
|||||||
from request_llm.bridge_chatgpt import predict_no_ui
|
|
||||||
from toolbox import update_ui
|
from toolbox import update_ui
|
||||||
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
|
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
|
||||||
|
|
||||||
|
@ -2,10 +2,12 @@ from toolbox import CatchException, report_execption, write_results_to_file
|
|||||||
from toolbox import update_ui
|
from toolbox import update_ui
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
|
from colorful import *
|
||||||
|
|
||||||
def read_and_clean_pdf_text(fp):
|
def read_and_clean_pdf_text(fp):
|
||||||
"""
|
"""
|
||||||
|
这个函数用于分割pdf,用了很多trick,逻辑较乱,效果奇好,不建议任何人去读这个函数
|
||||||
|
|
||||||
**输入参数说明**
|
**输入参数说明**
|
||||||
- `fp`:需要读取和清理文本的pdf文件路径
|
- `fp`:需要读取和清理文本的pdf文件路径
|
||||||
|
|
||||||
@ -22,17 +24,43 @@ def read_and_clean_pdf_text(fp):
|
|||||||
- 清除重复的换行
|
- 清除重复的换行
|
||||||
- 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔
|
- 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔
|
||||||
"""
|
"""
|
||||||
import fitz
|
import fitz, copy
|
||||||
import re
|
import re
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
fc = 0
|
||||||
|
fs = 1
|
||||||
|
fb = 2
|
||||||
|
REMOVE_FOOT_NOTE = True
|
||||||
|
REMOVE_FOOT_FFSIZE_PERCENT = 0.95
|
||||||
|
def primary_ffsize(l):
|
||||||
|
fsize_statiscs = {}
|
||||||
|
for wtf in l['spans']:
|
||||||
|
if wtf['size'] not in fsize_statiscs: fsize_statiscs[wtf['size']] = 0
|
||||||
|
fsize_statiscs[wtf['size']] += len(wtf['text'])
|
||||||
|
return max(fsize_statiscs, key=fsize_statiscs.get)
|
||||||
|
|
||||||
|
def ffsize_same(a,b):
|
||||||
|
return abs((a-b)/max(a,b)) < 0.02
|
||||||
# file_content = ""
|
# file_content = ""
|
||||||
with fitz.open(fp) as doc:
|
with fitz.open(fp) as doc:
|
||||||
meta_txt = []
|
meta_txt = []
|
||||||
meta_font = []
|
meta_font = []
|
||||||
|
|
||||||
|
meta_line = []
|
||||||
|
meta_span = []
|
||||||
for index, page in enumerate(doc):
|
for index, page in enumerate(doc):
|
||||||
# file_content += page.get_text()
|
# file_content += page.get_text()
|
||||||
text_areas = page.get_text("dict") # 获取页面上的文本信息
|
text_areas = page.get_text("dict") # 获取页面上的文本信息
|
||||||
|
for t in text_areas['blocks']:
|
||||||
|
if 'lines' in t:
|
||||||
|
pf = 998
|
||||||
|
for l in t['lines']:
|
||||||
|
txt_line = "".join([wtf['text'] for wtf in l['spans']])
|
||||||
|
pf = primary_ffsize(l)
|
||||||
|
meta_line.append([txt_line, pf, l['bbox'], l])
|
||||||
|
for wtf in l['spans']: # for l in t['lines']:
|
||||||
|
meta_span.append([wtf['text'], wtf['size'], len(wtf['text'])])
|
||||||
|
# meta_line.append(["NEW_BLOCK", pf])
|
||||||
# 块元提取 for each word segment with in line for each line cross-line words for each block
|
# 块元提取 for each word segment with in line for each line cross-line words for each block
|
||||||
meta_txt.extend([" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
|
meta_txt.extend([" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
|
||||||
'- ', '') for t in text_areas['blocks'] if 'lines' in t])
|
'- ', '') for t in text_areas['blocks'] if 'lines' in t])
|
||||||
@ -41,6 +69,56 @@ def read_and_clean_pdf_text(fp):
|
|||||||
if index == 0:
|
if index == 0:
|
||||||
page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
|
page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
|
||||||
'- ', '') for t in text_areas['blocks'] if 'lines' in t]
|
'- ', '') for t in text_areas['blocks'] if 'lines' in t]
|
||||||
|
# 获取正文主字体
|
||||||
|
fsize_statiscs = {}
|
||||||
|
for span in meta_span:
|
||||||
|
if span[1] not in fsize_statiscs: fsize_statiscs[span[1]] = 0
|
||||||
|
fsize_statiscs[span[1]] += span[2]
|
||||||
|
main_fsize = max(fsize_statiscs, key=fsize_statiscs.get)
|
||||||
|
if REMOVE_FOOT_NOTE:
|
||||||
|
give_up_fize_threshold = main_fsize * REMOVE_FOOT_FFSIZE_PERCENT
|
||||||
|
|
||||||
|
# 切分和重新整合
|
||||||
|
mega_sec = []
|
||||||
|
sec = []
|
||||||
|
for index, line in enumerate(meta_line):
|
||||||
|
if index == 0:
|
||||||
|
sec.append(line[fc])
|
||||||
|
continue
|
||||||
|
if REMOVE_FOOT_NOTE:
|
||||||
|
if meta_line[index][fs] <= give_up_fize_threshold:
|
||||||
|
continue
|
||||||
|
if ffsize_same(meta_line[index][fs], meta_line[index-1][fs]):
|
||||||
|
# 尝试识别段落
|
||||||
|
if meta_line[index][fc].endswith('.') and\
|
||||||
|
(meta_line[index-1][fc] != 'NEW_BLOCK') and \
|
||||||
|
(meta_line[index][fb][2] - meta_line[index][fb][0]) < (meta_line[index-1][fb][2] - meta_line[index-1][fb][0]) * 0.7:
|
||||||
|
sec[-1] += line[fc]
|
||||||
|
sec[-1] += "\n\n"
|
||||||
|
else:
|
||||||
|
sec[-1] += " "
|
||||||
|
sec[-1] += line[fc]
|
||||||
|
else:
|
||||||
|
if (index+1 < len(meta_line)) and \
|
||||||
|
meta_line[index][fs] > main_fsize:
|
||||||
|
# 单行 + 字体大
|
||||||
|
mega_sec.append(copy.deepcopy(sec))
|
||||||
|
sec = []
|
||||||
|
sec.append("# " + line[fc])
|
||||||
|
else:
|
||||||
|
# 尝试识别section
|
||||||
|
if meta_line[index-1][fs] > meta_line[index][fs]:
|
||||||
|
sec.append("\n" + line[fc])
|
||||||
|
else:
|
||||||
|
sec.append(line[fc])
|
||||||
|
mega_sec.append(copy.deepcopy(sec))
|
||||||
|
|
||||||
|
finals = []
|
||||||
|
for ms in mega_sec:
|
||||||
|
final = " ".join(ms)
|
||||||
|
final = final.replace('- ', ' ')
|
||||||
|
finals.append(final)
|
||||||
|
meta_txt = finals
|
||||||
|
|
||||||
def 把字符太少的块清除为回车(meta_txt):
|
def 把字符太少的块清除为回车(meta_txt):
|
||||||
for index, block_txt in enumerate(meta_txt):
|
for index, block_txt in enumerate(meta_txt):
|
||||||
@ -85,6 +163,10 @@ def read_and_clean_pdf_text(fp):
|
|||||||
# 换行 -> 双换行
|
# 换行 -> 双换行
|
||||||
meta_txt = meta_txt.replace('\n', '\n\n')
|
meta_txt = meta_txt.replace('\n', '\n\n')
|
||||||
|
|
||||||
|
for f in finals:
|
||||||
|
print亮黄(f)
|
||||||
|
print亮绿('***************************')
|
||||||
|
|
||||||
return meta_txt, page_one_meta
|
return meta_txt, page_one_meta
|
||||||
|
|
||||||
|
|
||||||
@ -145,21 +227,23 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
TOKEN_LIMIT_PER_FRAGMENT = 1600
|
TOKEN_LIMIT_PER_FRAGMENT = 1600
|
||||||
generated_conclusion_files = []
|
generated_conclusion_files = []
|
||||||
for index, fp in enumerate(file_manifest):
|
for index, fp in enumerate(file_manifest):
|
||||||
|
|
||||||
# 读取PDF文件
|
# 读取PDF文件
|
||||||
file_content, page_one = read_and_clean_pdf_text(fp)
|
file_content, page_one = read_and_clean_pdf_text(fp)
|
||||||
|
|
||||||
# 递归地切割PDF文件
|
# 递归地切割PDF文件
|
||||||
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
||||||
from toolbox import get_conf
|
from toolbox import get_conf
|
||||||
enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
|
enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
|
||||||
def get_token_num(txt): return len(enc.encode(txt))
|
def get_token_num(txt): return len(enc.encode(txt))
|
||||||
# 分解文本
|
|
||||||
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
||||||
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
|
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
|
||||||
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
||||||
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
|
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
|
||||||
# 为了更好的效果,我们剥离Introduction之后的部分
|
|
||||||
paper_meta = page_one_fragments[0].split('introduction')[0].split(
|
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
|
||||||
'Introduction')[0].split('INTRODUCTION')[0]
|
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
||||||
|
|
||||||
# 单线,获取文章meta信息
|
# 单线,获取文章meta信息
|
||||||
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}",
|
inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}",
|
||||||
@ -168,23 +252,32 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
chatbot=chatbot, history=[],
|
chatbot=chatbot, history=[],
|
||||||
sys_prompt="Your job is to collect information from materials。",
|
sys_prompt="Your job is to collect information from materials。",
|
||||||
)
|
)
|
||||||
|
|
||||||
# 多线,翻译
|
# 多线,翻译
|
||||||
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||||
inputs_array=[
|
inputs_array=[
|
||||||
f"以下是你需要翻译的文章段落:\n{frag}" for frag in paper_fragments],
|
f"以下是你需要翻译的论文片段:\n{frag}" for frag in paper_fragments],
|
||||||
inputs_show_user_array=[f"" for _ in paper_fragments],
|
inputs_show_user_array=[f"\n---\n 原文: \n\n {frag.replace('#', '')} \n---\n 翻译:\n " for frag in paper_fragments],
|
||||||
llm_kwargs=llm_kwargs,
|
llm_kwargs=llm_kwargs,
|
||||||
chatbot=chatbot,
|
chatbot=chatbot,
|
||||||
history_array=[[paper_meta] for _ in paper_fragments],
|
history_array=[[paper_meta] for _ in paper_fragments],
|
||||||
sys_prompt_array=[
|
sys_prompt_array=[
|
||||||
"请你作为一个学术翻译,把整个段落翻译成中文,要求语言简洁,禁止重复输出原文。" for _ in paper_fragments],
|
"请你作为一个学术翻译,负责把学术论文的片段准确翻译成中文。" for _ in paper_fragments],
|
||||||
max_workers=16 # OpenAI所允许的最大并行过载
|
max_workers=16 # OpenAI所允许的最大并行过载
|
||||||
)
|
)
|
||||||
|
|
||||||
final = ["", paper_meta_info + '\n\n---\n\n---\n\n---\n\n']
|
# 整理报告的格式
|
||||||
|
for i,k in enumerate(gpt_response_collection):
|
||||||
|
if i%2==0:
|
||||||
|
gpt_response_collection[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection)//2}]: \n\n {paper_fragments[i//2].replace('#', '')} \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection)//2}]:\n "
|
||||||
|
else:
|
||||||
|
gpt_response_collection[i] = gpt_response_collection[i]
|
||||||
|
final = ["一、论文概况\n\n---\n\n", paper_meta_info.replace('# ', '### ') + '\n\n---\n\n', "二、论文翻译", ""]
|
||||||
final.extend(gpt_response_collection)
|
final.extend(gpt_response_collection)
|
||||||
create_report_file_name = f"{os.path.basename(fp)}.trans.md"
|
create_report_file_name = f"{os.path.basename(fp)}.trans.md"
|
||||||
res = write_results_to_file(final, file_name=create_report_file_name)
|
res = write_results_to_file(final, file_name=create_report_file_name)
|
||||||
|
|
||||||
|
# 更新UI
|
||||||
generated_conclusion_files.append(f'./gpt_log/{create_report_file_name}')
|
generated_conclusion_files.append(f'./gpt_log/{create_report_file_name}')
|
||||||
chatbot.append((f"{fp}完成了吗?", res))
|
chatbot.append((f"{fp}完成了吗?", res))
|
||||||
yield from update_ui(chatbot=chatbot, history=chatbot) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=chatbot) # 刷新界面
|
||||||
@ -200,4 +293,4 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
if os.path.exists(pdf_path):
|
if os.path.exists(pdf_path):
|
||||||
os.remove(pdf_path)
|
os.remove(pdf_path)
|
||||||
chatbot.append(("给出输出文件清单", str(generated_conclusion_files)))
|
chatbot.append(("给出输出文件清单", str(generated_conclusion_files)))
|
||||||
yield from update_ui(chatbot=chatbot, history=chatbot, msg=msg) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=chatbot) # 刷新界面
|
||||||
|
@ -1,4 +1,3 @@
|
|||||||
from request_llm.bridge_chatgpt import predict_no_ui
|
|
||||||
from toolbox import update_ui
|
from toolbox import update_ui
|
||||||
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
|
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
|
||||||
import re
|
import re
|
||||||
|
@ -1,4 +1,3 @@
|
|||||||
from request_llm.bridge_chatgpt import predict_no_ui
|
|
||||||
from toolbox import update_ui
|
from toolbox import update_ui
|
||||||
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
|
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
|
||||||
fast_debug = False
|
fast_debug = False
|
||||||
|
@ -1,4 +1,3 @@
|
|||||||
from request_llm.bridge_chatgpt import predict_no_ui
|
|
||||||
from toolbox import update_ui
|
from toolbox import update_ui
|
||||||
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
|
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
|
||||||
fast_debug = False
|
fast_debug = False
|
||||||
|
@ -39,38 +39,6 @@ def get_full_error(chunk, stream_response):
|
|||||||
break
|
break
|
||||||
return chunk
|
return chunk
|
||||||
|
|
||||||
def predict_no_ui(inputs, top_p, temperature, history=[], sys_prompt=""):
|
|
||||||
"""
|
|
||||||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。
|
|
||||||
predict函数的简化版。
|
|
||||||
用于payload比较大的情况,或者用于实现多线、带嵌套的复杂功能。
|
|
||||||
|
|
||||||
inputs 是本次问询的输入
|
|
||||||
top_p, temperature是chatGPT的内部调优参数
|
|
||||||
history 是之前的对话列表
|
|
||||||
(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误,然后raise ConnectionAbortedError)
|
|
||||||
"""
|
|
||||||
headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt=sys_prompt, stream=False)
|
|
||||||
|
|
||||||
retry = 0
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
# make a POST request to the API endpoint, stream=False
|
|
||||||
response = requests.post(API_URL, headers=headers, proxies=proxies,
|
|
||||||
json=payload, stream=False, timeout=TIMEOUT_SECONDS*2); break
|
|
||||||
except requests.exceptions.ReadTimeout as e:
|
|
||||||
retry += 1
|
|
||||||
traceback.print_exc()
|
|
||||||
if retry > MAX_RETRY: raise TimeoutError
|
|
||||||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
|
||||||
|
|
||||||
try:
|
|
||||||
result = json.loads(response.text)["choices"][0]["message"]["content"]
|
|
||||||
return result
|
|
||||||
except Exception as e:
|
|
||||||
if "choices" not in response.text: print(response.text)
|
|
||||||
raise ConnectionAbortedError("Json解析不合常规,可能是文本过长" + response.text)
|
|
||||||
|
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||||||
"""
|
"""
|
||||||
@ -276,7 +244,10 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
|||||||
"presence_penalty": 0,
|
"presence_penalty": 0,
|
||||||
"frequency_penalty": 0,
|
"frequency_penalty": 0,
|
||||||
}
|
}
|
||||||
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]}")
|
try:
|
||||||
|
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]}")
|
||||||
|
except:
|
||||||
|
print('输入中可能存在乱码。')
|
||||||
return headers,payload
|
return headers,payload
|
||||||
|
|
||||||
|
|
||||||
|
14
toolbox.py
14
toolbox.py
@ -87,10 +87,10 @@ def predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temp
|
|||||||
top_p, temperature: gpt参数
|
top_p, temperature: gpt参数
|
||||||
history: gpt参数 对话历史
|
history: gpt参数 对话历史
|
||||||
sys_prompt: gpt参数 sys_prompt
|
sys_prompt: gpt参数 sys_prompt
|
||||||
long_connection: 是否采用更稳定的连接方式(推荐)
|
long_connection: 是否采用更稳定的连接方式(推荐)(已弃用)
|
||||||
"""
|
"""
|
||||||
import time
|
import time
|
||||||
from request_llm.bridge_chatgpt import predict_no_ui, predict_no_ui_long_connection
|
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
|
||||||
from toolbox import get_conf
|
from toolbox import get_conf
|
||||||
TIMEOUT_SECONDS, MAX_RETRY = get_conf('TIMEOUT_SECONDS', 'MAX_RETRY')
|
TIMEOUT_SECONDS, MAX_RETRY = get_conf('TIMEOUT_SECONDS', 'MAX_RETRY')
|
||||||
# 多线程的时候,需要一个mutable结构在不同线程之间传递信息
|
# 多线程的时候,需要一个mutable结构在不同线程之间传递信息
|
||||||
@ -101,13 +101,9 @@ def predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temp
|
|||||||
def mt(i_say, history):
|
def mt(i_say, history):
|
||||||
while True:
|
while True:
|
||||||
try:
|
try:
|
||||||
if long_connection:
|
mutable[0] = predict_no_ui_long_connection(
|
||||||
mutable[0] = predict_no_ui_long_connection(
|
inputs=i_say, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt)
|
||||||
inputs=i_say, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt)
|
|
||||||
else:
|
|
||||||
mutable[0] = predict_no_ui(
|
|
||||||
inputs=i_say, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt)
|
|
||||||
break
|
|
||||||
except ConnectionAbortedError as token_exceeded_error:
|
except ConnectionAbortedError as token_exceeded_error:
|
||||||
# 尝试计算比例,尽可能多地保留文本
|
# 尝试计算比例,尽可能多地保留文本
|
||||||
p_ratio, n_exceed = get_reduce_token_percent(
|
p_ratio, n_exceed = get_reduce_token_percent(
|
||||||
|
Loading…
x
Reference in New Issue
Block a user