model_name = "ChatGLM3" cmd_to_install = "`pip install -r request_llms/requirements_chatglm.txt`" from toolbox import get_conf, ProxyNetworkActivate from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns # ------------------------------------------------------------------------------------------------------------------------ # πŸ”ŒπŸ’» Local Model # ------------------------------------------------------------------------------------------------------------------------ class GetGLM3Handle(LocalLLMHandle): def load_model_info(self): # πŸƒβ€β™‚οΈπŸƒβ€β™‚οΈπŸƒβ€β™‚οΈ ε­θΏ›η¨‹ζ‰§θ‘Œ self.model_name = model_name self.cmd_to_install = cmd_to_install def load_model_and_tokenizer(self): # πŸƒβ€β™‚οΈπŸƒβ€β™‚οΈπŸƒβ€β™‚οΈ ε­θΏ›η¨‹ζ‰§θ‘Œ from transformers import AutoModel, AutoTokenizer import os, glob import os import platform LOCAL_MODEL_QUANT, device = get_conf("LOCAL_MODEL_QUANT", "LOCAL_MODEL_DEVICE") _model_name_ = "THUDM/chatglm3-6b" # if LOCAL_MODEL_QUANT == "INT4": # INT4 # _model_name_ = "THUDM/chatglm3-6b-int4" # elif LOCAL_MODEL_QUANT == "INT8": # INT8 # _model_name_ = "THUDM/chatglm3-6b-int8" # else: # _model_name_ = "THUDM/chatglm3-6b" # FP16 with ProxyNetworkActivate("Download_LLM"): chatglm_tokenizer = AutoTokenizer.from_pretrained( _model_name_, trust_remote_code=True ) if device == "cpu": chatglm_model = AutoModel.from_pretrained( _model_name_, trust_remote_code=True, device="cpu", ).float() elif LOCAL_MODEL_QUANT == "INT4": # INT4 chatglm_model = AutoModel.from_pretrained( pretrained_model_name_or_path=_model_name_, trust_remote_code=True, device="cuda", load_in_4bit=True, ) elif LOCAL_MODEL_QUANT == "INT8": # INT8 chatglm_model = AutoModel.from_pretrained( pretrained_model_name_or_path=_model_name_, trust_remote_code=True, device="cuda", load_in_8bit=True, ) else: chatglm_model = AutoModel.from_pretrained( pretrained_model_name_or_path=_model_name_, trust_remote_code=True, device="cuda", ) chatglm_model = chatglm_model.eval() self._model = chatglm_model self._tokenizer = chatglm_tokenizer return self._model, self._tokenizer def llm_stream_generator(self, **kwargs): # πŸƒβ€β™‚οΈπŸƒβ€β™‚οΈπŸƒβ€β™‚οΈ ε­θΏ›η¨‹ζ‰§θ‘Œ def adaptor(kwargs): query = kwargs["query"] max_length = kwargs["max_length"] top_p = kwargs["top_p"] temperature = kwargs["temperature"] history = kwargs["history"] return query, max_length, top_p, temperature, history query, max_length, top_p, temperature, history = adaptor(kwargs) for response, history in self._model.stream_chat( self._tokenizer, query, history, max_length=max_length, top_p=top_p, temperature=temperature, ): yield response def try_to_import_special_deps(self, **kwargs): # import something that will raise error if the user does not install requirement_*.txt # πŸƒβ€β™‚οΈπŸƒβ€β™‚οΈπŸƒβ€β™‚οΈ δΈ»θΏ›η¨‹ζ‰§θ‘Œ import importlib # importlib.import_module('modelscope') # ------------------------------------------------------------------------------------------------------------------------ # πŸ”ŒπŸ’» GPT-Academic Interface # ------------------------------------------------------------------------------------------------------------------------ predict_no_ui_long_connection, predict = get_local_llm_predict_fns( GetGLM3Handle, model_name, history_format="chatglm3" )