# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目 """ 该文件中主要包含2个函数 不具备多线程能力的函数: 1. predict: 正常对话时使用,具备完备的交互功能,不可多线程 具备多线程调用能力的函数 2. predict_no_ui_long_connection:支持多线程 """ import os import time import traceback from toolbox import get_conf, update_ui, trimmed_format_exc, encode_image, every_image_file_in_path picture_system_prompt = "\n当回复图像时,必须说明正在回复哪张图像。所有图像仅在最后一个问题中提供,即使它们在历史记录中被提及。请使用'这是第X张图像:'的格式来指明您正在描述的是哪张图像。" Claude_3_Models = ["claude-3-sonnet-20240229", "claude-3-opus-20240229"] # config_private.py放自己的秘密如API和代理网址 # 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件 from toolbox import get_conf, update_ui, trimmed_format_exc, ProxyNetworkActivate proxies, TIMEOUT_SECONDS, MAX_RETRY, ANTHROPIC_API_KEY = \ get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'ANTHROPIC_API_KEY') timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \ '网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。' def get_full_error(chunk, stream_response): """ 获取完整的从Openai返回的报错 """ while True: try: chunk += next(stream_response) except: break return chunk def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False): """ 发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。 inputs: 是本次问询的输入 sys_prompt: 系统静默prompt llm_kwargs: chatGPT的内部调优参数 history: 是之前的对话列表 observe_window = None: 用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗 """ from anthropic import Anthropic watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可 if inputs == "": inputs = "空空如也的输入栏" message = generate_payload(inputs, llm_kwargs, history, stream=True, image_paths=None) retry = 0 if len(ANTHROPIC_API_KEY) == 0: raise RuntimeError("没有设置ANTHROPIC_API_KEY选项") while True: try: # make a POST request to the API endpoint, stream=False from .bridge_all import model_info anthropic = Anthropic(api_key=ANTHROPIC_API_KEY, base_url=model_info[llm_kwargs['llm_model']]['endpoint']) # endpoint = model_info[llm_kwargs['llm_model']]['endpoint'] # with ProxyNetworkActivate() stream = anthropic.messages.create( messages=message, max_tokens=4096, # The maximum number of tokens to generate before stopping. model=llm_kwargs['llm_model'], stream=True, temperature = llm_kwargs['temperature'], system=sys_prompt ) break except Exception as e: retry += 1 traceback.print_exc() if retry > MAX_RETRY: raise TimeoutError if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……') result = '' try: for completion in stream: if completion.type == "message_start" or completion.type == "content_block_start": continue elif completion.type == "message_stop" or completion.type == "content_block_stop" or completion.type == "message_delta": break result += completion.delta.text if not console_slience: print(completion.delta.text, end='') if observe_window is not None: # 观测窗,把已经获取的数据显示出去 if len(observe_window) >= 1: observe_window[0] += completion.delta.text # 看门狗,如果超过期限没有喂狗,则终止 if len(observe_window) >= 2: if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("用户取消了程序。") except Exception as e: traceback.print_exc() return result def make_media_input(history,inputs,image_paths): for image_path in image_paths: inputs = inputs + f'

' return inputs def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None): """ 发送至chatGPT,流式获取输出。 用于基础的对话功能。 inputs 是本次问询的输入 top_p, temperature是chatGPT的内部调优参数 history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误) chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容 additional_fn代表点击的哪个按钮,按钮见functional.py """ if inputs == "": inputs = "空空如也的输入栏" from anthropic import Anthropic if len(ANTHROPIC_API_KEY) == 0: chatbot.append((inputs, "没有设置ANTHROPIC_API_KEY")) yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面 return if additional_fn is not None: from core_functional import handle_core_functionality inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot) have_recent_file, image_paths = every_image_file_in_path(chatbot) if len(image_paths) > 20: chatbot.append((inputs, "图片数量超过api上限(20张)")) yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") return if any([llm_kwargs['llm_model'] == model for model in Claude_3_Models]) and have_recent_file: if inputs == "" or inputs == "空空如也的输入栏": inputs = "请描述给出的图片" system_prompt += picture_system_prompt # 由于没有单独的参数保存包含图片的历史,所以只能通过提示词对第几张图片进行定位 chatbot.append((make_media_input(history,inputs, image_paths), "")) yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面 else: chatbot.append((inputs, "")) yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面 try: message = generate_payload(inputs, llm_kwargs, history, stream, image_paths) except RuntimeError as e: chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。") yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面 return history.append(inputs); history.append("") retry = 0 while True: try: # make a POST request to the API endpoint, stream=True from .bridge_all import model_info anthropic = Anthropic(api_key=ANTHROPIC_API_KEY, base_url=model_info[llm_kwargs['llm_model']]['endpoint']) # endpoint = model_info[llm_kwargs['llm_model']]['endpoint'] # with ProxyNetworkActivate() stream = anthropic.messages.create( messages=message, max_tokens=4096, # The maximum number of tokens to generate before stopping. model=llm_kwargs['llm_model'], stream=True, temperature = llm_kwargs['temperature'], system=system_prompt ) break except: retry += 1 chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg)) retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else "" yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面 if retry > MAX_RETRY: raise TimeoutError gpt_replying_buffer = "" for completion in stream: if completion.type == "message_start" or completion.type == "content_block_start": continue elif completion.type == "message_stop" or completion.type == "content_block_stop" or completion.type == "message_delta": break try: gpt_replying_buffer = gpt_replying_buffer + completion.delta.text history[-1] = gpt_replying_buffer chatbot[-1] = (history[-2], history[-1]) yield from update_ui(chatbot=chatbot, history=history, msg='正常') # 刷新界面 except Exception as e: from toolbox import regular_txt_to_markdown tb_str = '```\n' + trimmed_format_exc() + '```' chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str}") yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + tb_str) # 刷新界面 return def generate_payload(inputs, llm_kwargs, history, stream, image_paths): """ 整合所有信息,选择LLM模型,生成http请求,为发送请求做准备 """ conversation_cnt = len(history) // 2 messages = [] if conversation_cnt: for index in range(0, 2*conversation_cnt, 2): what_i_have_asked = {} what_i_have_asked["role"] = "user" what_i_have_asked["content"] = [{"type": "text", "text": history[index]}] what_gpt_answer = {} what_gpt_answer["role"] = "assistant" what_gpt_answer["content"] = [{"type": "text", "text": history[index+1]}] if what_i_have_asked["content"][0]["text"] != "": if what_i_have_asked["content"][0]["text"] == "": continue if what_i_have_asked["content"][0]["text"] == timeout_bot_msg: continue messages.append(what_i_have_asked) messages.append(what_gpt_answer) else: messages[-1]['content'][0]['text'] = what_gpt_answer['content'][0]['text'] if any([llm_kwargs['llm_model'] == model for model in Claude_3_Models]) and image_paths: base64_images = [] for image_path in image_paths: base64_images.append(encode_image(image_path)) what_i_ask_now = {} what_i_ask_now["role"] = "user" what_i_ask_now["content"] = [] for base64_image in base64_images: what_i_ask_now["content"].append({ "type": "image", "source": { "type": "base64", "media_type": "image/jpeg", "data": base64_image, } }) what_i_ask_now["content"].append({"type": "text", "text": inputs}) else: what_i_ask_now = {} what_i_ask_now["role"] = "user" what_i_ask_now["content"] = [{"type": "text", "text": inputs}] messages.append(what_i_ask_now) return messages