from pydantic import BaseModel, Field from typing import List from toolbox import update_ui_lastest_msg, get_conf from request_llm.bridge_all import predict_no_ui_long_connection from crazy_functions.json_fns.pydantic_io import GptJsonIO import copy, json, pickle, os, sys def read_avail_plugin_enum(): from crazy_functional import get_crazy_functions plugin_arr = get_crazy_functions() # remove plugins with out explaination plugin_arr = {k:v for k, v in plugin_arr.items() if 'Info' in v} plugin_arr_info = {"F{:04d}".format(i):v["Info"] for i, v in enumerate(plugin_arr.values(), start=1)} plugin_arr_dict = {"F{:04d}".format(i):v for i, v in enumerate(plugin_arr.values(), start=1)} prompt = json.dumps(plugin_arr_info, ensure_ascii=False, indent=2) prompt = "\n\nThe defination of PluginEnum:\nPluginEnum=" + prompt return prompt, plugin_arr_dict def execute_plugin(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention): plugin_arr_enum_prompt, plugin_arr_dict = read_avail_plugin_enum() class Plugin(BaseModel): plugin_selection: str = Field(description="The most related plugin from one of the PluginEnum.", default="F0000000000000") plugin_arg: str = Field(description="The argument of the plugin. A path or url or empty.", default="") # ⭐ ⭐ ⭐ 选择插件 yield from update_ui_lastest_msg(lastmsg=f"正在执行任务: {txt}\n\n查找可用插件中...", chatbot=chatbot, history=history, delay=0) gpt_json_io = GptJsonIO(Plugin) gpt_json_io.format_instructions += plugin_arr_enum_prompt inputs = "Choose the correct plugin and extract plugin_arg, the user requirement is: \n\n" + \ ">> " + txt.rstrip('\n').replace('\n','\n>> ') + '\n\n' + \ gpt_json_io.format_instructions run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection( inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[]) plugin_sel = gpt_json_io.generate_output_auto_repair(run_gpt_fn(inputs, ""), run_gpt_fn) if plugin_sel.plugin_selection not in plugin_arr_dict: msg = f'找不到合适插件执行该任务' yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2) return # ⭐ ⭐ ⭐ 确认插件参数 plugin = plugin_arr_dict[plugin_sel.plugin_selection] yield from update_ui_lastest_msg(lastmsg=f"正在执行任务: {txt}\n\n提取插件参数...", chatbot=chatbot, history=history, delay=0) class PluginExplicit(BaseModel): plugin_selection: str = plugin_sel.plugin_selection plugin_arg: str = Field(description="The argument of the plugin.", default="") gpt_json_io = GptJsonIO(PluginExplicit) gpt_json_io.format_instructions += "The information about this plugin is:" + plugin["Info"] inputs = f"A plugin named {plugin_sel.plugin_selection} is selected, " + \ "you should extract plugin_arg from the user requirement, the user requirement is: \n\n" + \ ">> " + txt.rstrip('\n').replace('\n','\n>> ') + '\n\n' + \ gpt_json_io.format_instructions run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection( inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[]) plugin_sel = gpt_json_io.generate_output_auto_repair(run_gpt_fn(inputs, ""), run_gpt_fn) # ⭐ ⭐ ⭐ 执行插件 fn = plugin['Function'] fn_name = fn.__name__ msg = f'正在调用插件: {fn_name}\n\n插件说明:{plugin["Info"]}\n\n插件参数:{plugin_sel.plugin_arg}' yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2) yield from fn(plugin_sel.plugin_arg, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, -1) return