2023-07-02 14:42:12 +08:00

88 lines
3.6 KiB
Python

from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
import threading, time
import numpy as np
def take_audio_sentence_flagment(captured_audio):
"""
判断音频是否到达句尾,如果到了,截取片段
"""
ready_part = None
other_part = captured_audio
return ready_part, other_part
class InterviewAssistent():
def __init__(self):
self.capture_interval = 1.0 # second
self.stop = False
pass
def init(self, chatbot):
# 初始化音频采集线程
self.captured_audio = np.array([])
self.keep_latest_n_second = 10
self.ready_audio_flagment = None
self.stop = False
th1 = threading.Thread(target=self.audio_capture_thread, args=(chatbot._cookies['uuid'],))
th1.daemon = True
th1.start()
th2 = threading.Thread(target=self.audio2txt_thread, args=(chatbot._cookies['uuid'],))
th2.daemon = True
th2.start()
def audio_capture_thread(self, uuid):
# 在一个异步线程中采集音频
from .live_audio.audio_io import RealtimeAudioDistribution
rad = RealtimeAudioDistribution()
while not self.stop:
time.sleep(self.capture_interval)
self.captured_audio = np.concatenate((self.captured_audio, rad.read(uuid.hex)))
if len(self.captured_audio) > self.keep_latest_n_second * rad.rate:
self.captured_audio = self.captured_audio[-self.keep_latest_n_second * rad.rate:]
def audio2txt_thread(self, llm_kwargs):
import whisper
# 在一个异步线程中音频转文字
while not self.stop:
time.sleep(1)
if len(self.captured_audio) > 0:
model = whisper.load_model("base")
result = model.transcribe("audio.mp3", language='Chinese')
def gpt_answer(self, text, chatbot, history, llm_kwargs):
i_say = inputs_show_user = text
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=inputs_show_user,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
sys_prompt="你是求职者,正在参加面试,请回答问题。"
)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
history.extend([i_say, gpt_say])
def begin(self, llm_kwargs, plugin_kwargs, chatbot, history):
# 面试插件主函数
self.init(chatbot)
while True:
time.sleep(self.capture_interval)
if self.ready_audio_flagment:
audio_for_whisper = self.ready_audio_flagment
text = self.audio2txt(audio_for_whisper, llm_kwargs)
yield from self.gpt_answer(text, chatbot, history, llm_kwargs)
self.ready_audio_flagment = None
@CatchException
def 辅助面试(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# pip install -U openai-whisper
chatbot.append(["函数插件功能:辅助面试", "正在预热本地音频转文字模型 ..."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
import whisper
whisper.load_model("base")
chatbot.append(["预热本地音频转文字模型完成", "辅助面试助手, 正在监听音频 ..."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
ia = InterviewAssistent()
yield from ia.begin(llm_kwargs, plugin_kwargs, chatbot, history)