156 lines
5.5 KiB
Python
156 lines
5.5 KiB
Python
'''
|
||
Contributed by SagsMug. Modified by binary-husky
|
||
https://github.com/oobabooga/text-generation-webui/pull/175
|
||
'''
|
||
|
||
import asyncio
|
||
import json
|
||
import random
|
||
import string
|
||
import websockets
|
||
import logging
|
||
import time
|
||
import threading
|
||
import importlib
|
||
from toolbox import get_conf
|
||
LLM_MODEL, = get_conf('LLM_MODEL')
|
||
|
||
model_name, addr, port = LLM_MODEL.split('@')
|
||
|
||
def random_hash():
|
||
letters = string.ascii_lowercase + string.digits
|
||
return ''.join(random.choice(letters) for i in range(9))
|
||
|
||
async def run(context):
|
||
params = {
|
||
'max_new_tokens': 1024,
|
||
'do_sample': True,
|
||
'temperature': 0.5,
|
||
'top_p': 0.9,
|
||
'typical_p': 1,
|
||
'repetition_penalty': 1.05,
|
||
'encoder_repetition_penalty': 1.0,
|
||
'top_k': 0,
|
||
'min_length': 0,
|
||
'no_repeat_ngram_size': 0,
|
||
'num_beams': 1,
|
||
'penalty_alpha': 0,
|
||
'length_penalty': 1,
|
||
'early_stopping': False,
|
||
'seed': -1,
|
||
}
|
||
session = random_hash()
|
||
|
||
async with websockets.connect(f"ws://{addr}:{port}/queue/join") as websocket:
|
||
while content := json.loads(await websocket.recv()):
|
||
#Python3.10 syntax, replace with if elif on older
|
||
if content["msg"] == "send_hash":
|
||
await websocket.send(json.dumps({
|
||
"session_hash": session,
|
||
"fn_index": 12
|
||
}))
|
||
elif content["msg"] == "estimation":
|
||
pass
|
||
elif content["msg"] == "send_data":
|
||
await websocket.send(json.dumps({
|
||
"session_hash": session,
|
||
"fn_index": 12,
|
||
"data": [
|
||
context,
|
||
params['max_new_tokens'],
|
||
params['do_sample'],
|
||
params['temperature'],
|
||
params['top_p'],
|
||
params['typical_p'],
|
||
params['repetition_penalty'],
|
||
params['encoder_repetition_penalty'],
|
||
params['top_k'],
|
||
params['min_length'],
|
||
params['no_repeat_ngram_size'],
|
||
params['num_beams'],
|
||
params['penalty_alpha'],
|
||
params['length_penalty'],
|
||
params['early_stopping'],
|
||
params['seed'],
|
||
]
|
||
}))
|
||
elif content["msg"] == "process_starts":
|
||
pass
|
||
elif content["msg"] in ["process_generating", "process_completed"]:
|
||
yield content["output"]["data"][0]
|
||
# You can search for your desired end indicator and
|
||
# stop generation by closing the websocket here
|
||
if (content["msg"] == "process_completed"):
|
||
break
|
||
|
||
|
||
|
||
|
||
|
||
def predict_tgui(inputs, top_p, temperature, chatbot=[], history=[], system_prompt='', stream = True, additional_fn=None):
|
||
"""
|
||
发送至chatGPT,流式获取输出。
|
||
用于基础的对话功能。
|
||
inputs 是本次问询的输入
|
||
top_p, temperature是chatGPT的内部调优参数
|
||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||
"""
|
||
if additional_fn is not None:
|
||
import functional
|
||
importlib.reload(functional) # 热更新prompt
|
||
functional = functional.get_functionals()
|
||
if "PreProcess" in functional[additional_fn]: inputs = functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
|
||
inputs = functional[additional_fn]["Prefix"] + inputs + functional[additional_fn]["Suffix"]
|
||
|
||
raw_input = "What I would like to say is the following: " + inputs
|
||
logging.info(f'[raw_input] {raw_input}')
|
||
history.extend([inputs, ""])
|
||
chatbot.append([inputs, ""])
|
||
yield chatbot, history, "等待响应"
|
||
|
||
prompt = inputs
|
||
tgui_say = ""
|
||
|
||
mutable = [""]
|
||
def run_coorotine(mutable):
|
||
async def get_result(mutable):
|
||
async for response in run(prompt):
|
||
# Print intermediate steps
|
||
mutable[0] = response
|
||
asyncio.run(get_result(mutable))
|
||
|
||
thread_listen = threading.Thread(target=run_coorotine, args=(mutable,))
|
||
thread_listen.start()
|
||
|
||
while thread_listen.is_alive():
|
||
time.sleep(1)
|
||
# Print intermediate steps
|
||
if tgui_say != mutable[0]:
|
||
tgui_say = mutable[0]
|
||
history[-1] = tgui_say
|
||
chatbot[-1] = (history[-2], history[-1])
|
||
yield chatbot, history, "status_text"
|
||
|
||
logging.info(f'[response] {tgui_say}')
|
||
|
||
|
||
|
||
def predict_tgui_no_ui(inputs, top_p, temperature, history=[], sys_prompt=""):
|
||
raw_input = "What I would like to say is the following: " + inputs
|
||
prompt = inputs
|
||
tgui_say = ""
|
||
mutable = [""]
|
||
def run_coorotine(mutable):
|
||
async def get_result(mutable):
|
||
async for response in run(prompt):
|
||
# Print intermediate steps
|
||
mutable[0] = response
|
||
asyncio.run(get_result(mutable))
|
||
thread_listen = threading.Thread(target=run_coorotine, args=(mutable,))
|
||
thread_listen.start()
|
||
thread_listen.join()
|
||
tgui_say = mutable[0]
|
||
return tgui_say
|