151 lines
6.7 KiB
Python
151 lines
6.7 KiB
Python
from toolbox import update_ui
|
||
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
|
||
import re
|
||
import unicodedata
|
||
fast_debug = False
|
||
|
||
def is_paragraph_break(match):
|
||
"""
|
||
根据给定的匹配结果来判断换行符是否表示段落分隔。
|
||
如果换行符前为句子结束标志(句号,感叹号,问号),且下一个字符为大写字母,则换行符更有可能表示段落分隔。
|
||
也可以根据之前的内容长度来判断段落是否已经足够长。
|
||
"""
|
||
prev_char, next_char = match.groups()
|
||
|
||
# 句子结束标志
|
||
sentence_endings = ".!?"
|
||
|
||
# 设定一个最小段落长度阈值
|
||
min_paragraph_length = 140
|
||
|
||
if prev_char in sentence_endings and next_char.isupper() and len(match.string[:match.start(1)]) > min_paragraph_length:
|
||
return "\n\n"
|
||
else:
|
||
return " "
|
||
|
||
def normalize_text(text):
|
||
"""
|
||
通过把连字(ligatures)等文本特殊符号转换为其基本形式来对文本进行归一化处理。
|
||
例如,将连字 "fi" 转换为 "f" 和 "i"。
|
||
"""
|
||
# 对文本进行归一化处理,分解连字
|
||
normalized_text = unicodedata.normalize("NFKD", text)
|
||
|
||
# 替换其他特殊字符
|
||
cleaned_text = re.sub(r'[^\x00-\x7F]+', '', normalized_text)
|
||
|
||
return cleaned_text
|
||
|
||
def clean_text(raw_text):
|
||
"""
|
||
对从 PDF 提取出的原始文本进行清洗和格式化处理。
|
||
1. 对原始文本进行归一化处理。
|
||
2. 替换跨行的连词,例如 “Espe-\ncially” 转换为 “Especially”。
|
||
3. 根据 heuristic 规则判断换行符是否是段落分隔,并相应地进行替换。
|
||
"""
|
||
# 对文本进行归一化处理
|
||
normalized_text = normalize_text(raw_text)
|
||
|
||
# 替换跨行的连词
|
||
text = re.sub(r'(\w+-\n\w+)', lambda m: m.group(1).replace('-\n', ''), normalized_text)
|
||
|
||
# 根据前后相邻字符的特点,找到原文本中的换行符
|
||
newlines = re.compile(r'(\S)\n(\S)')
|
||
|
||
# 根据 heuristic 规则,用空格或段落分隔符替换原换行符
|
||
final_text = re.sub(newlines, lambda m: m.group(1) + is_paragraph_break(m) + m.group(2), text)
|
||
|
||
return final_text.strip()
|
||
|
||
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||
import time, glob, os, fitz
|
||
print('begin analysis on:', file_manifest)
|
||
for index, fp in enumerate(file_manifest):
|
||
with fitz.open(fp) as doc:
|
||
file_content = ""
|
||
for page in doc:
|
||
file_content += page.get_text()
|
||
file_content = clean_text(file_content)
|
||
print(file_content)
|
||
|
||
prefix = "接下来请你逐文件分析下面的论文文件,概括其内容" if index==0 else ""
|
||
i_say = prefix + f'请对下面的文章片段用中文做一个概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{file_content}```'
|
||
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}'
|
||
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
|
||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||
|
||
if not fast_debug:
|
||
msg = '正常'
|
||
# ** gpt request **
|
||
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, llm_kwargs, history=[]) # 带超时倒计时
|
||
|
||
chatbot[-1] = (i_say_show_user, gpt_say)
|
||
history.append(i_say_show_user); history.append(gpt_say)
|
||
yield from update_ui(chatbot=chatbot, history=chatbot, msg=msg) # 刷新界面
|
||
if not fast_debug: time.sleep(2)
|
||
|
||
all_file = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(file_manifest)])
|
||
i_say = f'根据以上你自己的分析,对全文进行概括,用学术性语言写一段中文摘要,然后再写一段英文摘要(包括{all_file})。'
|
||
chatbot.append((i_say, "[Local Message] waiting gpt response."))
|
||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||
|
||
if not fast_debug:
|
||
msg = '正常'
|
||
# ** gpt request **
|
||
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, llm_kwargs, history=history) # 带超时倒计时
|
||
|
||
chatbot[-1] = (i_say, gpt_say)
|
||
history.append(i_say); history.append(gpt_say)
|
||
yield from update_ui(chatbot=chatbot, history=chatbot, msg=msg) # 刷新界面
|
||
res = write_results_to_file(history)
|
||
chatbot.append(("完成了吗?", res))
|
||
yield from update_ui(chatbot=chatbot, history=chatbot, msg=msg) # 刷新界面
|
||
|
||
|
||
@CatchException
|
||
def 批量总结PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||
import glob, os
|
||
|
||
# 基本信息:功能、贡献者
|
||
chatbot.append([
|
||
"函数插件功能?",
|
||
"批量总结PDF文档。函数插件贡献者: ValeriaWong,Eralien"])
|
||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||
|
||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||
try:
|
||
import fitz
|
||
except:
|
||
report_execption(chatbot, history,
|
||
a = f"解析项目: {txt}",
|
||
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
|
||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||
return
|
||
|
||
# 清空历史,以免输入溢出
|
||
history = []
|
||
|
||
# 检测输入参数,如没有给定输入参数,直接退出
|
||
if os.path.exists(txt):
|
||
project_folder = txt
|
||
else:
|
||
if txt == "": txt = '空空如也的输入栏'
|
||
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||
return
|
||
|
||
# 搜索需要处理的文件清单
|
||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)] # + \
|
||
# [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] + \
|
||
# [f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)] + \
|
||
# [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
|
||
|
||
# 如果没找到任何文件
|
||
if len(file_manifest) == 0:
|
||
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex或.pdf文件: {txt}")
|
||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||
return
|
||
|
||
# 开始正式执行任务
|
||
yield from 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|