142 lines
6.2 KiB
Python
142 lines
6.2 KiB
Python
from toolbox import CatchException, update_ui, promote_file_to_downloadzone
|
||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||
import datetime, json
|
||
|
||
def fetch_items(list_of_items, batch_size):
|
||
for i in range(0, len(list_of_items), batch_size):
|
||
yield list_of_items[i:i + batch_size]
|
||
|
||
def string_to_options(arguments):
|
||
import argparse
|
||
import shlex
|
||
|
||
# Create an argparse.ArgumentParser instance
|
||
parser = argparse.ArgumentParser()
|
||
|
||
# Add command-line arguments
|
||
parser.add_argument("--llm_to_learn", type=str, help="LLM model to learn", default="gpt-3.5-turbo")
|
||
parser.add_argument("--prompt_prefix", type=str, help="Prompt prefix", default='')
|
||
parser.add_argument("--system_prompt", type=str, help="System prompt", default='')
|
||
parser.add_argument("--batch", type=int, help="System prompt", default=50)
|
||
parser.add_argument("--pre_seq_len", type=int, help="pre_seq_len", default=50)
|
||
parser.add_argument("--learning_rate", type=float, help="learning_rate", default=2e-2)
|
||
parser.add_argument("--num_gpus", type=int, help="num_gpus", default=1)
|
||
parser.add_argument("--json_dataset", type=str, help="json_dataset", default="")
|
||
parser.add_argument("--ptuning_directory", type=str, help="ptuning_directory", default="")
|
||
|
||
|
||
|
||
# Parse the arguments
|
||
args = parser.parse_args(shlex.split(arguments))
|
||
|
||
return args
|
||
|
||
@CatchException
|
||
def 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||
"""
|
||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||
plugin_kwargs 插件模型的参数
|
||
chatbot 聊天显示框的句柄,用于显示给用户
|
||
history 聊天历史,前情提要
|
||
system_prompt 给gpt的静默提醒
|
||
web_port 当前软件运行的端口号
|
||
"""
|
||
history = [] # 清空历史,以免输入溢出
|
||
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成"))
|
||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||
args = plugin_kwargs.get("advanced_arg", None)
|
||
if args is None:
|
||
chatbot.append(("没给定指令", "退出"))
|
||
yield from update_ui(chatbot=chatbot, history=history); return
|
||
else:
|
||
arguments = string_to_options(arguments=args)
|
||
|
||
dat = []
|
||
with open(txt, 'r', encoding='utf8') as f:
|
||
for line in f.readlines():
|
||
json_dat = json.loads(line)
|
||
dat.append(json_dat["content"])
|
||
|
||
llm_kwargs['llm_model'] = arguments.llm_to_learn
|
||
for batch in fetch_items(dat, arguments.batch):
|
||
res = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||
inputs_array=[f"{arguments.prompt_prefix}\n\n{b}" for b in (batch)],
|
||
inputs_show_user_array=[f"Show Nothing" for _ in (batch)],
|
||
llm_kwargs=llm_kwargs,
|
||
chatbot=chatbot,
|
||
history_array=[[] for _ in (batch)],
|
||
sys_prompt_array=[arguments.system_prompt for _ in (batch)],
|
||
max_workers=10 # OpenAI所允许的最大并行过载
|
||
)
|
||
|
||
with open(txt+'.generated.json', 'a+', encoding='utf8') as f:
|
||
for b, r in zip(batch, res[1::2]):
|
||
f.write(json.dumps({"content":b, "summary":r}, ensure_ascii=False)+'\n')
|
||
|
||
promote_file_to_downloadzone(txt+'.generated.json', rename_file='generated.json', chatbot=chatbot)
|
||
return
|
||
|
||
|
||
|
||
@CatchException
|
||
def 启动微调(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||
"""
|
||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||
plugin_kwargs 插件模型的参数
|
||
chatbot 聊天显示框的句柄,用于显示给用户
|
||
history 聊天历史,前情提要
|
||
system_prompt 给gpt的静默提醒
|
||
web_port 当前软件运行的端口号
|
||
"""
|
||
import subprocess
|
||
history = [] # 清空历史,以免输入溢出
|
||
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成"))
|
||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||
args = plugin_kwargs.get("advanced_arg", None)
|
||
if args is None:
|
||
chatbot.append(("没给定指令", "退出"))
|
||
yield from update_ui(chatbot=chatbot, history=history); return
|
||
else:
|
||
arguments = string_to_options(arguments=args)
|
||
|
||
|
||
|
||
pre_seq_len = arguments.pre_seq_len # 128
|
||
learning_rate = arguments.learning_rate # 2e-2
|
||
num_gpus = arguments.num_gpus # 1
|
||
json_dataset = arguments.json_dataset # 't_code.json'
|
||
ptuning_directory = arguments.ptuning_directory # '/home/hmp/ChatGLM2-6B/ptuning'
|
||
|
||
command = f"torchrun --standalone --nnodes=1 --nproc-per-node={num_gpus} main.py \
|
||
--do_train \
|
||
--train_file AdvertiseGen/{json_dataset} \
|
||
--validation_file AdvertiseGen/{json_dataset} \
|
||
--preprocessing_num_workers 20 \
|
||
--prompt_column content \
|
||
--response_column summary \
|
||
--overwrite_cache \
|
||
--model_name_or_path THUDM/chatglm2-6b \
|
||
--output_dir output/clothgen-chatglm2-6b-pt-{pre_seq_len}-{learning_rate} \
|
||
--overwrite_output_dir \
|
||
--max_source_length 256 \
|
||
--max_target_length 256 \
|
||
--per_device_train_batch_size 1 \
|
||
--per_device_eval_batch_size 1 \
|
||
--gradient_accumulation_steps 16 \
|
||
--predict_with_generate \
|
||
--max_steps 100 \
|
||
--logging_steps 10 \
|
||
--save_steps 20 \
|
||
--learning_rate {learning_rate} \
|
||
--pre_seq_len {pre_seq_len} \
|
||
--quantization_bit 4"
|
||
|
||
process = subprocess.Popen(command, shell=True, cwd=ptuning_directory)
|
||
try:
|
||
process.communicate(timeout=3600*24)
|
||
except subprocess.TimeoutExpired:
|
||
process.kill()
|
||
return
|