172 lines
7.9 KiB
Python
172 lines
7.9 KiB
Python
from functools import lru_cache
|
||
from toolbox import gen_time_str
|
||
from toolbox import promote_file_to_downloadzone
|
||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||
from toolbox import get_conf
|
||
from toolbox import ProxyNetworkActivate
|
||
from colorful import *
|
||
import requests
|
||
import random
|
||
import copy
|
||
import os
|
||
import math
|
||
|
||
class GROBID_OFFLINE_EXCEPTION(Exception): pass
|
||
|
||
def get_avail_grobid_url():
|
||
GROBID_URLS = get_conf('GROBID_URLS')
|
||
if len(GROBID_URLS) == 0: return None
|
||
try:
|
||
_grobid_url = random.choice(GROBID_URLS) # 随机负载均衡
|
||
if _grobid_url.endswith('/'): _grobid_url = _grobid_url.rstrip('/')
|
||
with ProxyNetworkActivate('Connect_Grobid'):
|
||
res = requests.get(_grobid_url+'/api/isalive')
|
||
if res.text=='true': return _grobid_url
|
||
else: return None
|
||
except:
|
||
return None
|
||
|
||
@lru_cache(maxsize=32)
|
||
def parse_pdf(pdf_path, grobid_url):
|
||
import scipdf # pip install scipdf_parser
|
||
if grobid_url.endswith('/'): grobid_url = grobid_url.rstrip('/')
|
||
try:
|
||
with ProxyNetworkActivate('Connect_Grobid'):
|
||
article_dict = scipdf.parse_pdf_to_dict(pdf_path, grobid_url=grobid_url)
|
||
except GROBID_OFFLINE_EXCEPTION:
|
||
raise GROBID_OFFLINE_EXCEPTION("GROBID服务不可用,请修改config中的GROBID_URL,可修改成本地GROBID服务。")
|
||
except:
|
||
raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
|
||
return article_dict
|
||
|
||
|
||
def produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files):
|
||
# -=-=-=-=-=-=-=-= 写出第1个文件:翻译前后混合 -=-=-=-=-=-=-=-=
|
||
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=f"{gen_time_str()}translated_and_original.md", file_fullname=None)
|
||
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(res_path)+'.md', chatbot=chatbot)
|
||
generated_conclusion_files.append(res_path)
|
||
|
||
# -=-=-=-=-=-=-=-= 写出第2个文件:仅翻译后的文本 -=-=-=-=-=-=-=-=
|
||
translated_res_array = []
|
||
# 记录当前的大章节标题:
|
||
last_section_name = ""
|
||
for index, value in enumerate(gpt_response_collection):
|
||
# 先挑选偶数序列号:
|
||
if index % 2 != 0:
|
||
# 先提取当前英文标题:
|
||
cur_section_name = gpt_response_collection[index-1].split('\n')[0].split(" Part")[0]
|
||
# 如果index是1的话,则直接使用first section name:
|
||
if cur_section_name != last_section_name:
|
||
cur_value = cur_section_name + '\n'
|
||
last_section_name = copy.deepcopy(cur_section_name)
|
||
else:
|
||
cur_value = ""
|
||
# 再做一个小修改:重新修改当前part的标题,默认用英文的
|
||
cur_value += value
|
||
translated_res_array.append(cur_value)
|
||
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + translated_res_array,
|
||
file_basename = f"{gen_time_str()}-translated_only.md",
|
||
file_fullname = None,
|
||
auto_caption = False)
|
||
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(res_path)+'.md', chatbot=chatbot)
|
||
generated_conclusion_files.append(res_path)
|
||
return res_path
|
||
|
||
def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG):
|
||
from crazy_functions.pdf_fns.report_gen_html import construct_html
|
||
from crazy_functions.crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||
|
||
prompt = "以下是一篇学术论文的基本信息:\n"
|
||
# title
|
||
title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
|
||
# authors
|
||
authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n'
|
||
# abstract
|
||
abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
|
||
# command
|
||
prompt += f"请将题目和摘要翻译为{DST_LANG}。"
|
||
meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ]
|
||
|
||
# 单线,获取文章meta信息
|
||
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||
inputs=prompt,
|
||
inputs_show_user=prompt,
|
||
llm_kwargs=llm_kwargs,
|
||
chatbot=chatbot, history=[],
|
||
sys_prompt="You are an academic paper reader。",
|
||
)
|
||
|
||
# 多线,翻译
|
||
inputs_array = []
|
||
inputs_show_user_array = []
|
||
|
||
# get_token_num
|
||
from request_llms.bridge_all import model_info
|
||
enc = model_info[llm_kwargs['llm_model']]['tokenizer']
|
||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||
|
||
def break_down(txt):
|
||
raw_token_num = get_token_num(txt)
|
||
if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT:
|
||
return [txt]
|
||
else:
|
||
# raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
|
||
# find a smooth token limit to achieve even seperation
|
||
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
|
||
token_limit_smooth = raw_token_num // count + count
|
||
return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)
|
||
|
||
for section in article_dict.get('sections'):
|
||
if len(section['text']) == 0: continue
|
||
section_frags = break_down(section['text'])
|
||
for i, fragment in enumerate(section_frags):
|
||
heading = section['heading']
|
||
if len(section_frags) > 1: heading += f' Part-{i+1}'
|
||
inputs_array.append(
|
||
f"你需要翻译{heading}章节,内容如下: \n\n{fragment}"
|
||
)
|
||
inputs_show_user_array.append(
|
||
f"# {heading}\n\n{fragment}"
|
||
)
|
||
|
||
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||
inputs_array=inputs_array,
|
||
inputs_show_user_array=inputs_show_user_array,
|
||
llm_kwargs=llm_kwargs,
|
||
chatbot=chatbot,
|
||
history_array=[meta for _ in inputs_array],
|
||
sys_prompt_array=[
|
||
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
|
||
)
|
||
# -=-=-=-=-=-=-=-= 写出Markdown文件 -=-=-=-=-=-=-=-=
|
||
produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files)
|
||
|
||
# -=-=-=-=-=-=-=-= 写出HTML文件 -=-=-=-=-=-=-=-=
|
||
ch = construct_html()
|
||
orig = ""
|
||
trans = ""
|
||
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
|
||
for i,k in enumerate(gpt_response_collection_html):
|
||
if i%2==0:
|
||
gpt_response_collection_html[i] = inputs_show_user_array[i//2]
|
||
else:
|
||
# 先提取当前英文标题:
|
||
cur_section_name = gpt_response_collection[i-1].split('\n')[0].split(" Part")[0]
|
||
cur_value = cur_section_name + "\n" + gpt_response_collection_html[i]
|
||
gpt_response_collection_html[i] = cur_value
|
||
|
||
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""]
|
||
final.extend(gpt_response_collection_html)
|
||
for i, k in enumerate(final):
|
||
if i%2==0:
|
||
orig = k
|
||
if i%2==1:
|
||
trans = k
|
||
ch.add_row(a=orig, b=trans)
|
||
create_report_file_name = f"{os.path.basename(fp)}.trans.html"
|
||
html_file = ch.save_file(create_report_file_name)
|
||
generated_conclusion_files.append(html_file)
|
||
promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot)
|