168 lines
6.9 KiB
Python
168 lines
6.9 KiB
Python
|
||
from transformers import AutoModel, AutoTokenizer
|
||
import time
|
||
import threading
|
||
import importlib
|
||
from toolbox import update_ui, get_conf, ProxyNetworkActivate
|
||
from multiprocessing import Process, Pipe
|
||
|
||
load_message = "ChatGLM尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLM消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||
|
||
#################################################################################
|
||
class GetGLMHandle(Process):
|
||
def __init__(self):
|
||
super().__init__(daemon=True)
|
||
self.parent, self.child = Pipe()
|
||
self.chatglm_model = None
|
||
self.chatglm_tokenizer = None
|
||
self.info = ""
|
||
self.success = True
|
||
self.check_dependency()
|
||
self.start()
|
||
self.threadLock = threading.Lock()
|
||
|
||
def check_dependency(self):
|
||
try:
|
||
import sentencepiece
|
||
self.info = "依赖检测通过"
|
||
self.success = True
|
||
except:
|
||
self.info = "缺少ChatGLM的依赖,如果要使用ChatGLM,除了基础的pip依赖以外,您还需要运行`pip install -r request_llms/requirements_chatglm.txt`安装ChatGLM的依赖。"
|
||
self.success = False
|
||
|
||
def ready(self):
|
||
return self.chatglm_model is not None
|
||
|
||
def run(self):
|
||
# 子进程执行
|
||
# 第一次运行,加载参数
|
||
retry = 0
|
||
LOCAL_MODEL_QUANT, device = get_conf('LOCAL_MODEL_QUANT', 'LOCAL_MODEL_DEVICE')
|
||
|
||
if LOCAL_MODEL_QUANT == "INT4": # INT4
|
||
_model_name_ = "THUDM/chatglm2-6b-int4"
|
||
elif LOCAL_MODEL_QUANT == "INT8": # INT8
|
||
_model_name_ = "THUDM/chatglm2-6b-int8"
|
||
else:
|
||
_model_name_ = "THUDM/chatglm2-6b" # FP16
|
||
|
||
while True:
|
||
try:
|
||
with ProxyNetworkActivate('Download_LLM'):
|
||
if self.chatglm_model is None:
|
||
self.chatglm_tokenizer = AutoTokenizer.from_pretrained(_model_name_, trust_remote_code=True)
|
||
if device=='cpu':
|
||
self.chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).float()
|
||
else:
|
||
self.chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).half().cuda()
|
||
self.chatglm_model = self.chatglm_model.eval()
|
||
break
|
||
else:
|
||
break
|
||
except:
|
||
retry += 1
|
||
if retry > 3:
|
||
self.child.send('[Local Message] Call ChatGLM fail 不能正常加载ChatGLM的参数。')
|
||
raise RuntimeError("不能正常加载ChatGLM的参数!")
|
||
|
||
while True:
|
||
# 进入任务等待状态
|
||
kwargs = self.child.recv()
|
||
# 收到消息,开始请求
|
||
try:
|
||
for response, history in self.chatglm_model.stream_chat(self.chatglm_tokenizer, **kwargs):
|
||
self.child.send(response)
|
||
# # 中途接收可能的终止指令(如果有的话)
|
||
# if self.child.poll():
|
||
# command = self.child.recv()
|
||
# if command == '[Terminate]': break
|
||
except:
|
||
from toolbox import trimmed_format_exc
|
||
self.child.send('[Local Message] Call ChatGLM fail.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
|
||
# 请求处理结束,开始下一个循环
|
||
self.child.send('[Finish]')
|
||
|
||
def stream_chat(self, **kwargs):
|
||
# 主进程执行
|
||
self.threadLock.acquire()
|
||
self.parent.send(kwargs)
|
||
while True:
|
||
res = self.parent.recv()
|
||
if res != '[Finish]':
|
||
yield res
|
||
else:
|
||
break
|
||
self.threadLock.release()
|
||
|
||
global glm_handle
|
||
glm_handle = None
|
||
#################################################################################
|
||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||
"""
|
||
多线程方法
|
||
函数的说明请见 request_llms/bridge_all.py
|
||
"""
|
||
global glm_handle
|
||
if glm_handle is None:
|
||
glm_handle = GetGLMHandle()
|
||
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + glm_handle.info
|
||
if not glm_handle.success:
|
||
error = glm_handle.info
|
||
glm_handle = None
|
||
raise RuntimeError(error)
|
||
|
||
# chatglm 没有 sys_prompt 接口,因此把prompt加入 history
|
||
history_feedin = []
|
||
history_feedin.append(["What can I do?", sys_prompt])
|
||
for i in range(len(history)//2):
|
||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||
|
||
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
||
response = ""
|
||
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||
if len(observe_window) >= 1: observe_window[0] = response
|
||
if len(observe_window) >= 2:
|
||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||
raise RuntimeError("程序终止。")
|
||
return response
|
||
|
||
|
||
|
||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||
"""
|
||
单线程方法
|
||
函数的说明请见 request_llms/bridge_all.py
|
||
"""
|
||
chatbot.append((inputs, ""))
|
||
|
||
global glm_handle
|
||
if glm_handle is None:
|
||
glm_handle = GetGLMHandle()
|
||
chatbot[-1] = (inputs, load_message + "\n\n" + glm_handle.info)
|
||
yield from update_ui(chatbot=chatbot, history=[])
|
||
if not glm_handle.success:
|
||
glm_handle = None
|
||
return
|
||
|
||
if additional_fn is not None:
|
||
from core_functional import handle_core_functionality
|
||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||
|
||
# 处理历史信息
|
||
history_feedin = []
|
||
history_feedin.append(["What can I do?", system_prompt] )
|
||
for i in range(len(history)//2):
|
||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||
|
||
# 开始接收chatglm的回复
|
||
response = "[Local Message] 等待ChatGLM响应中 ..."
|
||
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||
chatbot[-1] = (inputs, response)
|
||
yield from update_ui(chatbot=chatbot, history=history)
|
||
|
||
# 总结输出
|
||
if response == "[Local Message] 等待ChatGLM响应中 ...":
|
||
response = "[Local Message] ChatGLM响应异常 ..."
|
||
history.extend([inputs, response])
|
||
yield from update_ui(chatbot=chatbot, history=history)
|