chatgpt_academic/request_llms/local_llm_class.py
2023-10-28 19:23:43 +08:00

180 lines
7.2 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from transformers import AutoModel, AutoTokenizer
import time
import threading
import importlib
from toolbox import update_ui, get_conf, Singleton
from multiprocessing import Process, Pipe
def SingletonLocalLLM(cls):
"""
一个单实例装饰器
"""
_instance = {}
def _singleton(*args, **kargs):
if cls not in _instance:
_instance[cls] = cls(*args, **kargs)
return _instance[cls]
elif _instance[cls].corrupted:
_instance[cls] = cls(*args, **kargs)
return _instance[cls]
else:
return _instance[cls]
return _singleton
class LocalLLMHandle(Process):
def __init__(self):
# ⭐主进程执行
super().__init__(daemon=True)
self.corrupted = False
self.load_model_info()
self.parent, self.child = Pipe()
self.running = True
self._model = None
self._tokenizer = None
self.info = ""
self.check_dependency()
self.start()
self.threadLock = threading.Lock()
def load_model_info(self):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
raise NotImplementedError("Method not implemented yet")
self.model_name = ""
self.cmd_to_install = ""
def load_model_and_tokenizer(self):
"""
This function should return the model and the tokenizer
"""
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
raise NotImplementedError("Method not implemented yet")
def llm_stream_generator(self, **kwargs):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
raise NotImplementedError("Method not implemented yet")
def try_to_import_special_deps(self, **kwargs):
"""
import something that will raise error if the user does not install requirement_*.txt
"""
# ⭐主进程执行
raise NotImplementedError("Method not implemented yet")
def check_dependency(self):
# ⭐主进程执行
try:
self.try_to_import_special_deps()
self.info = "依赖检测通过"
self.running = True
except:
self.info = f"缺少{self.model_name}的依赖,如果要使用{self.model_name}除了基础的pip依赖以外您还需要运行{self.cmd_to_install}安装{self.model_name}的依赖。"
self.running = False
def run(self):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
# 第一次运行,加载参数
try:
self._model, self._tokenizer = self.load_model_and_tokenizer()
except:
self.running = False
from toolbox import trimmed_format_exc
self.child.send(f'[Local Message] 不能正常加载{self.model_name}的参数.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
self.child.send('[FinishBad]')
raise RuntimeError(f"不能正常加载{self.model_name}的参数!")
while True:
# 进入任务等待状态
kwargs = self.child.recv()
# 收到消息,开始请求
try:
for response_full in self.llm_stream_generator(**kwargs):
self.child.send(response_full)
self.child.send('[Finish]')
# 请求处理结束,开始下一个循环
except:
from toolbox import trimmed_format_exc
self.child.send(f'[Local Message] 调用{self.model_name}失败.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
self.child.send('[Finish]')
def stream_chat(self, **kwargs):
# ⭐主进程执行
self.threadLock.acquire()
self.parent.send(kwargs)
while True:
res = self.parent.recv()
if res == '[Finish]':
break
if res == '[FinishBad]':
self.running = False
self.corrupted = True
break
else:
yield res
self.threadLock.release()
def get_local_llm_predict_fns(LLMSingletonClass, model_name):
load_message = f"{model_name}尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,{model_name}消耗大量的内存CPU或显存GPU也许会导致低配计算机卡死 ……"
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
"""
⭐多线程方法
函数的说明请见 request_llms/bridge_all.py
"""
_llm_handle = LLMSingletonClass()
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + _llm_handle.info
if not _llm_handle.running: raise RuntimeError(_llm_handle.info)
# chatglm 没有 sys_prompt 接口因此把prompt加入 history
history_feedin = []
history_feedin.append([sys_prompt, "Certainly!"])
for i in range(len(history)//2):
history_feedin.append([history[2*i], history[2*i+1]] )
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
response = ""
for response in _llm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
if len(observe_window) >= 1:
observe_window[0] = response
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。")
return response
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
⭐单线程方法
函数的说明请见 request_llms/bridge_all.py
"""
chatbot.append((inputs, ""))
_llm_handle = LLMSingletonClass()
chatbot[-1] = (inputs, load_message + "\n\n" + _llm_handle.info)
yield from update_ui(chatbot=chatbot, history=[])
if not _llm_handle.running: raise RuntimeError(_llm_handle.info)
if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
# 处理历史信息
history_feedin = []
history_feedin.append([system_prompt, "Certainly!"])
for i in range(len(history)//2):
history_feedin.append([history[2*i], history[2*i+1]] )
# 开始接收回复
response = f"[Local Message] 等待{model_name}响应中 ..."
for response in _llm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)
# 总结输出
if response == f"[Local Message] 等待{model_name}响应中 ...":
response = f"[Local Message] {model_name}响应异常 ..."
history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history)
return predict_no_ui_long_connection, predict