* Update version to 3.74 * Add support for Yi Model API (#1635) * 更新以支持零一万物模型 * 删除newbing * 修改config --------- Co-authored-by: binary-husky <qingxu.fu@outlook.com> * Refactor function signatures in bridge files * fix qwen api change * rename and ref functions * rename and move some cookie functions * 增加haiku模型,新增endpoint配置说明 (#1626) * haiku added * 新增haiku,新增endpoint配置说明 * Haiku added * 将说明同步至最新Endpoint --------- Co-authored-by: binary-husky <qingxu.fu@outlook.com> * private_upload目录下进行文件鉴权 (#1596) * private_upload目录下进行文件鉴权 * minor fastapi adjustment * Add logging functionality to enable saving conversation records * waiting to fix username retrieve * support 2rd web path * allow accessing default user dir --------- Co-authored-by: binary-husky <qingxu.fu@outlook.com> * remove yaml deps * fix favicon * fix abs path auth problem * forget to write a return * add `dashscope` to deps * fix GHSA-v9q9-xj86-953p * 用户名重叠越权访问patch (#1681) * add cohere model api access * cohere + can_multi_thread * fix block user access(fail) * fix fastapi bug * change cohere api endpoint * explain version * # fix com_zhipuglm.py illegal temperature problem (#1687) * Update com_zhipuglm.py # fix 用户在使用 zhipuai 界面时遇到了关于温度参数的非法参数错误 * allow store lm model dropdown * add a btn to reverse previous reset * remove extra fns * Add support for glm-4v model (#1700) * 修改chatglm3量化加载方式 (#1688) Co-authored-by: zym9804 <ren990603@gmail.com> * save chat stage 1 * consider null cookie situation * 在点击复制按钮时激活语音 * miss some parts * move all to js * done first stage * add edge tts * bug fix * bug fix * remove console log * bug fix * bug fix * bug fix * audio switch * update tts readme * remove tempfile when done * disable auto audio follow * avoid play queue update after shut up * feat: minimizing common.js * improve tts functionality * deterine whether the cached model is in choices * Add support for Ollama (#1740) * print err when doc2x not successful * add icon * adjust url for doc2x key version * prepare merge --------- Co-authored-by: Menghuan1918 <menghuan2003@outlook.com> Co-authored-by: Skyzayre <120616113+Skyzayre@users.noreply.github.com> Co-authored-by: XIao <46100050+Kilig947@users.noreply.github.com> Co-authored-by: Yuki <903728862@qq.com> Co-authored-by: zyren123 <91042213+zyren123@users.noreply.github.com> Co-authored-by: zym9804 <ren990603@gmail.com>
273 lines
12 KiB
Python
273 lines
12 KiB
Python
# 借鉴自同目录下的bridge_chatgpt.py
|
||
|
||
"""
|
||
该文件中主要包含三个函数
|
||
|
||
不具备多线程能力的函数:
|
||
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
|
||
|
||
具备多线程调用能力的函数
|
||
2. predict_no_ui_long_connection:支持多线程
|
||
"""
|
||
|
||
import json
|
||
import time
|
||
import gradio as gr
|
||
import logging
|
||
import traceback
|
||
import requests
|
||
import importlib
|
||
import random
|
||
|
||
# config_private.py放自己的秘密如API和代理网址
|
||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||
from toolbox import get_conf, update_ui, trimmed_format_exc, is_the_upload_folder, read_one_api_model_name
|
||
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf(
|
||
"proxies", "TIMEOUT_SECONDS", "MAX_RETRY"
|
||
)
|
||
|
||
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
||
|
||
def get_full_error(chunk, stream_response):
|
||
"""
|
||
获取完整的从Openai返回的报错
|
||
"""
|
||
while True:
|
||
try:
|
||
chunk += next(stream_response)
|
||
except:
|
||
break
|
||
return chunk
|
||
|
||
def decode_chunk(chunk):
|
||
# 提前读取一些信息(用于判断异常)
|
||
chunk_decoded = chunk.decode()
|
||
chunkjson = None
|
||
is_last_chunk = False
|
||
try:
|
||
chunkjson = json.loads(chunk_decoded)
|
||
is_last_chunk = chunkjson.get("done", False)
|
||
except:
|
||
pass
|
||
return chunk_decoded, chunkjson, is_last_chunk
|
||
|
||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||
"""
|
||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||
inputs:
|
||
是本次问询的输入
|
||
sys_prompt:
|
||
系统静默prompt
|
||
llm_kwargs:
|
||
chatGPT的内部调优参数
|
||
history:
|
||
是之前的对话列表
|
||
observe_window = None:
|
||
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||
"""
|
||
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||
if inputs == "": inputs = "空空如也的输入栏"
|
||
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
|
||
retry = 0
|
||
while True:
|
||
try:
|
||
# make a POST request to the API endpoint, stream=False
|
||
from .bridge_all import model_info
|
||
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
|
||
except requests.exceptions.ReadTimeout as e:
|
||
retry += 1
|
||
traceback.print_exc()
|
||
if retry > MAX_RETRY: raise TimeoutError
|
||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||
|
||
stream_response = response.iter_lines()
|
||
result = ''
|
||
while True:
|
||
try: chunk = next(stream_response)
|
||
except StopIteration:
|
||
break
|
||
except requests.exceptions.ConnectionError:
|
||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||
chunk_decoded, chunkjson, is_last_chunk = decode_chunk(chunk)
|
||
if chunk:
|
||
try:
|
||
if is_last_chunk:
|
||
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||
logging.info(f'[response] {result}')
|
||
break
|
||
result += chunkjson['message']["content"]
|
||
if not console_slience: print(chunkjson['message']["content"], end='')
|
||
if observe_window is not None:
|
||
# 观测窗,把已经获取的数据显示出去
|
||
if len(observe_window) >= 1:
|
||
observe_window[0] += chunkjson['message']["content"]
|
||
# 看门狗,如果超过期限没有喂狗,则终止
|
||
if len(observe_window) >= 2:
|
||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||
raise RuntimeError("用户取消了程序。")
|
||
except Exception as e:
|
||
chunk = get_full_error(chunk, stream_response)
|
||
chunk_decoded = chunk.decode()
|
||
error_msg = chunk_decoded
|
||
print(error_msg)
|
||
raise RuntimeError("Json解析不合常规")
|
||
return result
|
||
|
||
|
||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||
"""
|
||
发送至chatGPT,流式获取输出。
|
||
用于基础的对话功能。
|
||
inputs 是本次问询的输入
|
||
top_p, temperature是chatGPT的内部调优参数
|
||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||
"""
|
||
if inputs == "": inputs = "空空如也的输入栏"
|
||
user_input = inputs
|
||
if additional_fn is not None:
|
||
from core_functional import handle_core_functionality
|
||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||
|
||
raw_input = inputs
|
||
logging.info(f'[raw_input] {raw_input}')
|
||
chatbot.append((inputs, ""))
|
||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||
|
||
# check mis-behavior
|
||
if is_the_upload_folder(user_input):
|
||
chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。")
|
||
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
|
||
time.sleep(2)
|
||
|
||
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
||
|
||
from .bridge_all import model_info
|
||
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||
|
||
history.append(inputs); history.append("")
|
||
|
||
retry = 0
|
||
while True:
|
||
try:
|
||
# make a POST request to the API endpoint, stream=True
|
||
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
|
||
except:
|
||
retry += 1
|
||
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
|
||
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
||
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
||
if retry > MAX_RETRY: raise TimeoutError
|
||
|
||
gpt_replying_buffer = ""
|
||
|
||
if stream:
|
||
stream_response = response.iter_lines()
|
||
while True:
|
||
try:
|
||
chunk = next(stream_response)
|
||
except StopIteration:
|
||
break
|
||
except requests.exceptions.ConnectionError:
|
||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||
|
||
# 提前读取一些信息 (用于判断异常)
|
||
chunk_decoded, chunkjson, is_last_chunk = decode_chunk(chunk)
|
||
|
||
if chunk:
|
||
try:
|
||
if is_last_chunk:
|
||
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||
logging.info(f'[response] {gpt_replying_buffer}')
|
||
break
|
||
# 处理数据流的主体
|
||
try:
|
||
status_text = f"finish_reason: {chunkjson['error'].get('message', 'null')}"
|
||
except:
|
||
status_text = "finish_reason: null"
|
||
gpt_replying_buffer = gpt_replying_buffer + chunkjson['message']["content"]
|
||
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
|
||
history[-1] = gpt_replying_buffer
|
||
chatbot[-1] = (history[-2], history[-1])
|
||
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
|
||
except Exception as e:
|
||
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
|
||
chunk = get_full_error(chunk, stream_response)
|
||
chunk_decoded = chunk.decode()
|
||
error_msg = chunk_decoded
|
||
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
||
print(error_msg)
|
||
return
|
||
|
||
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
|
||
from .bridge_all import model_info
|
||
if "bad_request" in error_msg:
|
||
chatbot[-1] = (chatbot[-1][0], "[Local Message] 已经超过了模型的最大上下文或是模型格式错误,请尝试削减单次输入的文本量。")
|
||
elif "authentication_error" in error_msg:
|
||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. 请确保API key有效。")
|
||
elif "not_found" in error_msg:
|
||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] {llm_kwargs['llm_model']} 无效,请确保使用小写的模型名称。")
|
||
elif "rate_limit" in error_msg:
|
||
chatbot[-1] = (chatbot[-1][0], "[Local Message] 遇到了控制请求速率限制,请一分钟后重试。")
|
||
elif "system_busy" in error_msg:
|
||
chatbot[-1] = (chatbot[-1][0], "[Local Message] 系统繁忙,请一分钟后重试。")
|
||
else:
|
||
from toolbox import regular_txt_to_markdown
|
||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
|
||
return chatbot, history
|
||
|
||
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||
"""
|
||
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||
"""
|
||
|
||
headers = {
|
||
"Content-Type": "application/json",
|
||
}
|
||
|
||
conversation_cnt = len(history) // 2
|
||
|
||
messages = [{"role": "system", "content": system_prompt}]
|
||
if conversation_cnt:
|
||
for index in range(0, 2*conversation_cnt, 2):
|
||
what_i_have_asked = {}
|
||
what_i_have_asked["role"] = "user"
|
||
what_i_have_asked["content"] = history[index]
|
||
what_gpt_answer = {}
|
||
what_gpt_answer["role"] = "assistant"
|
||
what_gpt_answer["content"] = history[index+1]
|
||
if what_i_have_asked["content"] != "":
|
||
if what_gpt_answer["content"] == "": continue
|
||
if what_gpt_answer["content"] == timeout_bot_msg: continue
|
||
messages.append(what_i_have_asked)
|
||
messages.append(what_gpt_answer)
|
||
else:
|
||
messages[-1]['content'] = what_gpt_answer['content']
|
||
|
||
what_i_ask_now = {}
|
||
what_i_ask_now["role"] = "user"
|
||
what_i_ask_now["content"] = inputs
|
||
messages.append(what_i_ask_now)
|
||
model = llm_kwargs['llm_model']
|
||
if llm_kwargs['llm_model'].startswith('ollama-'):
|
||
model = llm_kwargs['llm_model'][len('ollama-'):]
|
||
model, _ = read_one_api_model_name(model)
|
||
options = {"temperature": llm_kwargs['temperature']}
|
||
payload = {
|
||
"model": model,
|
||
"messages": messages,
|
||
"options": options,
|
||
}
|
||
try:
|
||
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
|
||
except:
|
||
print('输入中可能存在乱码。')
|
||
return headers,payload
|